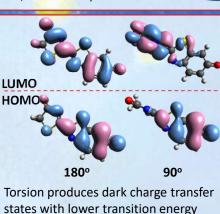
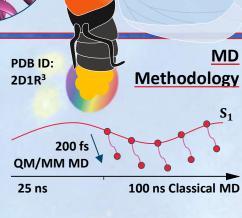
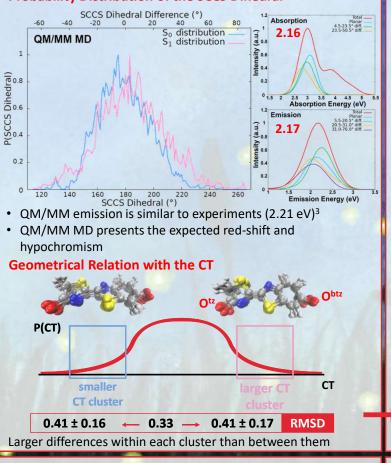

Computational Characterization of the Relevance of the Luciferase **Environment on the Electronic Properties of the Oxyluciferin Bioluminescent System**


Henar Mateo-delaFuente,¹ Davide Avagliano,² Marco Garavelli,² Juan J. Nogueira^{1,3} ¹Universidad Autónoma de Madrid, ²Università di Bologna, ³Institute for Advance Research in Chemical Sciences


Motivation

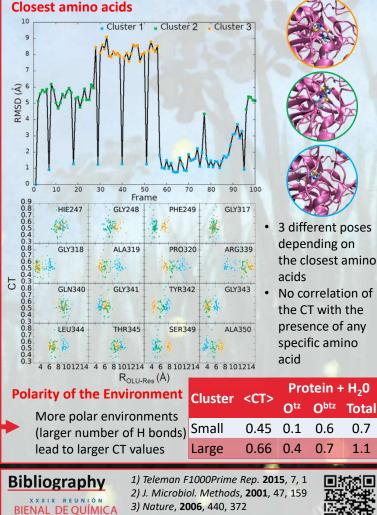
- The oxyluciferin/luciferase complex has many applications in bioimaging¹ and biosensing²
- Goal: to determine the structural characteristics that affect the electronic transition properties of the oxyluciferin/luciferase system

In vacuum Static Picture



TD-B3LYP/6-311G(2d,p) single point

Intramolecular Degrees of Freedom


Probability Distribution of the SCCS Dihedral

Conclusions

- The torsional motion of the OLU is hampered by the enzyme, reducing the intramolecular CT nature of the emitting state.
- The presence of a polar environment around the OLU enhances the charge transfer character of the emitting state.

Intermolecular Degrees of Freedom

SC2

Zaragoza 2023 🎑

UAM

Total

0.7

1.1

O^{btz}

0.6

0.7

4) PCCP, 2023, DOI: 10.1039/d3cp01387a