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Abstract

In the midst of the ongoing Covid-19 pandemic, the emergence of the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global

health crisis. One of the key viral components, known as ORF3a, has garnered

significant interest due to its intriguing characteristics as an ion channel and

transmembrane protein. Viroporins, a class of proteins that alter ion channel

functions, including membrane permeability and remodeling, have been associ-

ated with various stages of viral life cycles, such as virion morphogenesis, viral

particle replication, and virus release.

In this study, we investigate the ion channel activity of the SARS-CoV-2 ORF3a

protein through the application of molecular dynamics simulations. our exper-

imental study unveiled the ability to observe the migration of ions during their

passage through the channel. Therefore, classical molecular dynamics sim-

ulations of ORF3a are employed to elucidate the mechanism by which ions

traverse the channel. We uncover that ion passage is facilitated by a solvation

shell, which aids in the migration of ions into the channel. Notably, the trans-

port of ions is mediated by a water channel spanning across the protein.

Taking our investigation further, we aim to identify the specific residues within

ORF3a that are involved in interactions with ions, thus facilitating their flow

into the channel. By elucidating these critical molecular interactions, we can

gain deeper insights into the underlying mechanisms of ion channel activity in

the context of SARS-CoV-2. Our findings contribute to the understanding of

the vital role played by ORF3a in the viral life cycle, potentially opening doors

for the development of targeted therapeutic strategies aimed at disrupting this

important viral protein.
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SUMMARIO

L’emergere della grave sindrome respiratoria acuta Coronavirus 2 (SARS-CoV-2), e la sua

evoluzione in pandemia di Covid-19, hanno causato una crisi sanitaria globale. Uno dei

componenti virali chiave, noto come ORF3a, è stato oggetto di notevole interesse per le

sue interessanti caratteristiche di potenziale canale ionico e proteina trans-membrana. Le

viroporine, quali ORF3a, una classe di proteine che alterano le funzioni dei canali ionici,

quindi la permeabilità e il rimodellamento della membrana cellulare, sono state associate a

varie fasi dei cicli di vita virali, come la morfogenesi del virione, la replicazione virale delle

particelle e rilascio di virus. In questo lavoro di tesi, è stata studiata l’attività del canale

ionico del SARS-CoV-2, la proteina ORF3a, attraverso l’applicazione di simulazioni di

dinamica molecolare. Le nostre osservazioni hanno rivelato la presenza di canali cationici

non selettivi all’interno della membrana della cellula, veri e propri pori macromolecolari

che facilitano il rapido movimento degli ioni. Per convalidare le nostre scoperte, sono state

effettuate simulazioni di dinamica molecolare classica del sistema ORF3a-membrana, al

fine di chiarire il meccanismo mediante il quale gli ioni attraversano il canale. Abbiamo

dimostrato che il passaggio degli ioni è facilitato da un guscio di solvatazione, che aiuta nella

migrazione degli ioni nel canale. In particolare, il trasporto di ioni è mediato da un canale

d’acqua che attraversa la tutta membrana cellulare. Sviluppi ulteriori dello studio mirano

a identificare i residui specifici all’interno di ORF3a che sono direttamente coinvolti nelle

interazioni con gli ioni, facilitandone così il flusso nel canale. Chiarire queste interazioni

molecolari critiche, permetterà di ottenere informazioni più approfondite sui meccanismi

alla base dell’attività dei canali ionici nel contesto dell’interazione del SARS-CoV-2 con

le cellule. I risultati ottenuti contribuiscono alla comprensione di il ruolo cruciale svolto

da ORF3a nel ciclo di vita virale, facilitando lo sviluppo di strategie terapeutiche mirate,

volte a bloccare questa importante proteina virale.
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Introduction

1.1 Covid-19

The Coronavirus Disease 2019 (COVID-19) is a respiratory illness that spreads easily and

is caused by a recently discovered coronavirus known as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). (1, 2) There have been three outbreaks of coronavirus since

2002, including those caused by severe acute respiratory syndrome coronavirus (SARS-

CoV), detected in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV),

detected in 2012. During the year 2002, 8,098 people became infected with the SARS-CoV

virus, and 774 of them died due to this illness after the virus had spread via air travel routes

from the Guangdong province in China.(3)The MERS-CoV virus spread throughout the

Arabian Peninsula, leading to a large number of public health threats in the region, and

was exported to 27 countries, with over 2,494 people infected and 858 deaths registered.

It was discovered in December 2019 that a previously unknown coronavirus, called SARS-

CoV-2, had been isolated and sequenced from Wuhan, Hubei province of China. According

to the World Health Organization (WHO), the disease has been con�rmed in more than

700 million cases throughout the world, leading to more than 6 million deaths.(3, 4, 5) In

a recent study, an emerging pathogen was identi�ed as a variant of the betacorona virus

genus which is related closely to several bat coronaviruses. Since Sars-Cov-2 appeared to

be spreading rapidly from human to human, the WHO declared a Public Health Emer-

gency of International Concern (PHEIC) in 2020 as a result of its rapid spreading across

multiple continents.(6, 7)

Virion surfaces are protruded by a transmembrane spike glycoprotein (S protein), which

is used as a vehicle for Coronavirus to enter into host cells. In order for the virus to infect

the host cells, this protein facilitates the attachment of the virus to a type of receptor
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on the cell surface of the host.(6, 7, 8) By doing so, the virus can fuse with the host's

membrane. There are also 29 proteins encoded by the viral genome of Cov2 which include

16 structural proteins (NSP1-NSP16), 4 nonstructural proteins (S, E, M, and N), and the

presence of 9 accessory Open Reading Frames (ORFs), namely 3a, 3b, 6, 7a, 7b, 8, 9b,

and 9c, is identi�ed. These ORFs represent speci�c DNA or RNA sequences that have the

potential to be translated into proteins.(9, 10) The protein S exhibits a binding a�nity for

the angiotensin-converting enzyme ACE2, which is abundantly expressed in China horse-

shoe bats, human skin, and civets.(Figure 1.1) This speci�c interaction plays a pivotal role

in facilitating viral cellular entry, enabling the virus to gain access to host cells. (11, 12)

Many of the vaccines and therapeutic drugs are developed based on virus-encoded pro-

teins, such as spike, RNA-dependent RNA polymerase, and main protease.(13, 14) Several

of these targets have been analyzed at high resolution, and some of them have been com-

plexed with potential drugs or neutralizing antibodies, to provide mechanistic insight into

their function, which has been used to develop highly e�ective vaccines and drugs using

structure-guided design. There is still a need to develop additional knowledge about the

target proteins of SARS-CoV-2 in order to better understand its virology and to design

alternative treatments leading to minimizing the risk of developing resistance or introduc-

ing new viruses.(15, 16, 17) ORF3a is identi�ed as a viroporin, a viral transmembrane

Figure 1.1: SARS-CoV-2 virus structure
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protein that possesses ion channel properties within cell membranes. As a hydrophobic

protein, ORF3a oligomerizes in the cell membrane, forming hydrophilic pores that enable

the passage of ions and small molecules. This unique characteristic of ORF3a viroporin

holds signi�cance in viral replication and pathogenesis, as it in�uences the permeability

of cell membranes. (18) Understanding the role of ORF3a viroporin is essential because

it helps to comprehend how the virus and our bodies interact in intricate ways. This

knowledge is crucial because it enables scientists to develop targeted treatments and pre-

ventive measures that speci�cally address the function of ORF3a viroporin. By studying

it, it is possible to discover ways to combat the virus more e�ectively and safeguard the

health.(19, 20) In a recent cryo-EM study(21), the structure of SARS-CoV-2 ORF3a was

determined for the �rst time (PDB ID: 6XDC), see Figure 1.2. The structure comprises

three transmembrane helices (TM1-TM3, residues 41-132) followed by a cytosolic domain

that consists of two cell walls arranged in an antiparallel con�guration. Upon dimeriza-

tion, ORF3a forms six transmembrane helices which act as an ion channel. These helices

contain polar/charged residues within the channel, which conduct cations. Furthermore,

ion channels are important therapeutic targets, and a great deal of work has already been

done in developing drugs that target ion channels. Due to its role in pathogenicity, ORF3a

can be another potential drug target for disease management.(14, 22, 23)

Figure 1.2: The dimeric ORF3a protein (PDB ID: 6XDC). The six transmembrane helices
form ion channels in the host membrane.

The ORF3a protein present in SARS-CoV-2 plays a crucial role in the virus's interaction
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with host cells. It generates a specialized channel, known as a non-selective cationic chan-

nel, that permits the movement of positively charged ions across the protective membrane

of the host cell. Remarkably, this channel is not limited to a speci�c type of ion and al-

lows the passage of various cations, including sodium (Na+ ), potassium (K+ ), and calcium

(Ca2+ ).(24) The ORF3a protein in SARS-CoV-2 has therefore two critical purposes. In

the �rst place, it alters the ion balance in the cellular environment, potentially activating

signaling pathways that support virus propagation. This could assist the virus in evad-

ing the host's immune response and establishing infection. Additionally, enveloped viral

particles may be released from infected cells through the ORF3a channel. During viral

replication within infected cells, the ORF3a channel aids in the release of newly formed

viral particles by enabling their exit through the host cell membrane.(25)(21) This channel

plays a critical role in the development of potential treatments for COVID-19 since it is

believed that targeting the channel can potentially disrupt the viral life cycle and prevent

the virus from causing any disease.(14, 26)

It is our aim in this work to investigate the ionic permeability through the ORF3a

channels by means of computational methods. In fact, the results presented in Reference

(21) suggest that ORF3a of SARS-CoV-2 might function as a non-selective cationic channel

with a large pore and high single-channel conductance which refers to a high capacity to

conduct ions, potentially in�uencing cellular processes and the virus's interaction with

the host. In addition, the study of the ion solvation sphere could provide crucial insights

into the dynamic movement of the solvation shell as it traverses the channel during each

simulation. Finally, we can possibly obtain valuable insights into the selection of key

protein residues, by systematically investigating the interactions between ions and residues.

Such an analysis will shed light on the precise in�uence these interactions have on the

intricate process of ion movement through the channel.
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2

Theoretical Background

2.1 Statistical Averages and the Ergodic Hypothesis

Molecular dynamics (MD) simulations o�er a means to comprehend the temporal evolution

occurring at the atomic level. By employing statistical averaging, we establish a crucial

connection between microscopic observations and the macroscopic properties exhibited by

systems. Within a macroscopic system in equilibrium, comprising multiple statesW and

maintained at a constant temperatureT, the average valuehAi of a particular variable of

interest can be determined. This average value is obtained by summing the possible values

An of the variable, each weighed by their corresponding probabilities� n .(27, 28)

hAi =
WX

n=1

� nAn (2.1)

As the quantity n ! 1 , the distribution becomes increasingly continuous and can be

mathematically represented as an integral. This integral incorporates a partition function

� n , which is de�ned by a Boltzmann distribution containing the Boltzmann constant kB

and the potential energy of stateUn .

hAi =
Z 1

0
A(n)� (n)dn � (n) =

e
� U ( n )
K B T

R
e

� U ( n )
K B T dn

(2.2)

The quantity hAi described here is referred to as an ensemble average. Within MD simula-

tion, the time average of the observableA can be approximated by computing the average

of its values at equally spaced time intervals, considering a total ofM time steps.(27, 28, 29)

A =
1

M

MX

i =1

A(tn ) (2.3)
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When M ! 1 , this expression can be viewed as performing an integration across the

entire duration of the simulation, denoted ast tot .(30, 31)

lim
M !1

A =
1

t tot

Z t tot

0
A(t0)dt0 (2.4)

According to the ergodic hypothesis, when a signi�cant number of statesW are sampled

during an adequate number of timestepsM , ensemble averaging and time averaging become

interchangeable methods for computing the average value of an observable quantityA. This

observable is reliant on the coordinates and momenta of a system composed of multiple

particles and is in�uenced by the system's phase space. In the realm of MD simulations,

the iterative propagation of atomic positions and velocities generates a trajectory that

characterizes the system's evolution over time. By considering the ensemble of all pointsi

within the phase space, one can accurately predict various system properties, where each

point represents a potential con�guration of the system.

2.2 Exploring the Equations of Motion

In classical molecular dynamics simulations, the displacement of particles is examined in

response to the cumulative forcesF i exerted upon them. By integrating Newton's equa-

tions of motion, a trajectory is generated, o�ering a comprehensive understanding of the

temporal evolution of positions, velocities, and accelerations. The profound connection

between acceleration and the forces acting on individual atoms is elucidated through New-

ton's second law.(32)(33)

F i = mi ai (2.5)

These equations can be reformulated using the Hamiltonian formulation, which employs

generalized coordinatesq i and momentap i instead of Cartesian coordinatesr i and veloc-

ities v i . This more general approach expands the understanding of dynamic systems by

incorporating a broader range of coordinate systems and their associated momenta.

p i = mi v i (2.6)

The expressions de�ning the kinetic energy of a particleK i and the force acting on it F i

can be reformulated using momentump i as an alternative representation.

K i =
1
2

mi v 2
i =

1
2

p2
i

mi
(2.7)
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F i =
dp i

dt
(2.8)

The initial equation of motion is expressed as the derivative ofK i with respect to p i ,

yielding the displacementqi in dt.

dq i

dt
=

dK i

dp i
(2.9)

Within an isolated system, the force F i can be de�ned as the negative gradient of the

potential energy surface.

F i = r U � �
@U
@q i

(2.10)

By combining Equation 2.8 and Equation 2.10, the second Hamilton equation for an iso-

lated system can be derived.

dp i

dt
= �

@U
@q i

(2.11)

To numerically integrate Newton's equations of motion for an atomic ensemble in Cartesian

coordinates space, each atomi is assigned a positionr i , a velocity v i , and an acceleration

vector ai . These three quantities are interconnected as follows:

v i =
dr i

dt
and ai =

dv i

dt
=

d2r i

dt2 (2.12)

By performing numerical integration from the initial time t = 0 to the �nal time t, we can

determine the time evolution of both r i and v i .

r i (t) =
Z t

0
v i (t0)dt0+ r i (0) and v i (t) =

Z t

0
ai (t0)dt0+ v i (0) (2.13)

2.3 Relationship Between Temperature, Pressure, and the

Virial Equation of State

The equation of state provides a comprehensive description of the interplay between various

thermodynamic properties in a system. The force acting on an atomi is the cumulative

sum of all forcesF ij , encompassing interactions between atoms within the system, pressure-

related forces Fp, and additional external contributions (Fext , in�uences from applied

electric �elds).(34, 35)

F i =
NX

i 6= j

F ij + Fp + Fext (2.14)
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The derivation of the Virial equation of state begins with the time derivative of r i · p i . By

utilizing the relationships presented in Equation 2.6 and Equation 2.12, we can derive the

following expression:

d
dt

(r i :p i ) = mi
d
dt

(r i
dr i

dt
) = r i mi

d2r i

dt2
| {z }
m i ai = F i

+ mi (
dr i

dt
)2

| {z }
m i v 2

i

(2.15)

Within the expression, the second term encompasses a forceF i , while the �nal term cor-

responds to a contribution from kinetic energy.

2(
1
2

mi v 2
i ) = 2 K (2.16)

The equation represented by Equation 2.15 can be expanded to encompass a summation

across all particles within a system.

NX

i =1

mi
d
dt

(r i
dr i

dt
) =

NX

i =1

r i F i + 2
NX

i =1

K i (2.17)

In an ergodic system, the ensemble average can be computed as the sum of individual aver-

ages for each term. For an isolated system devoid of external forces, only forces originating

from atomic interactions and pressure are relevant. Fluctuations in particle velocities and

positions occur randomly and exhibit a symmetric distribution around their respective

mean values. Furthermore, the time derivative of their product follows a random distribu-

tion centered around an average value of zero. (36, 37)

� NX

i =1

mi
d
dt

(r i
dr i

dt
)

| {z }
=0

�
=

� NX

i =1

r i F i

| {z }
W

�
+ 2hK i

(2.18)

The term denoted on the right side of the equation represents the system's virialW .

0 = hW i + 2hK i (2.19)

In a perfectly isolated system, the total energy remains conserved, while variables such as

pressure and temperature exhibit �uctuations.

2.3.1 Kinetic Energy-Temperature Correlation:

The temperature T of a particle system is determined by the average kinetic energyhK i ,

which, in turn, depends on the average velocitiesvi of the particles.

hK i =
� NX

i =1

1
2

mi v 2
i

�
=

3
2

NkB T (2.20)
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In an N � atomic system at equilibrium, the given equation expresses that each atom with

three degrees of freedom contributes12kB T (kB corresponding to the Boltzmann constant)

to the overall kinetic energy. This equation mathematically represents the equipartition

principle in statistical mechanics, which allocates an equal share of energy to each degree

of freedom in the system. (38, 39)

2.3.2 Virial-Pressure Relationship:

In Equation 2.14, it is stated that within an isolated system, the total force acting on its

particles comprises the combined e�ects of a pressure forceFP and the summation of all

atom-atom interaction contributions F int .(40)

hW i =
� NX

i =1

r i F i

�
=

� NX

i =1

r i Fp

�
+

� NX

i =1

r i F int

�
(2.21)

The application of pressure on a system primarily a�ects its surface, resulting in a force

contribution of zero for bulk atoms. In the scenario of a cubic simulation box, the force

exerted on each face of the cube demonstrates a direct proportionality to the applied

pressurep and the surface area of the cubeL 2. Additionally, the total pressure force

manifests a proportional relationship with the cubic volumeV of the system.(41)

F = pL2 and
� NX

i =1

r i Fp

�
= � 3pL3 = � 3pV (2.22)

Having established these relationships, it becomes possible to reformulate the equation of

state (Equation 2.20) to express the interdependence among a system's particle countN ,

temperature T, pressurep, volume V , and internal forces.

3NkB T +
� NX

i =1

r i F int

�
+ 3pV = 0 (2.23)

By utilizing the correlation between force F and potential energyU, as depicted in Equa-

tion 2.10, it is possible to express the virial equation of state in terms of the potential

energy associated with particle interactions. When dealing with a noninteracting system,

this contribution becomes negligible, resulting in Equation 2.24 reducing to the ideal gas

law.

pV
kB NT

= �
1

3kB NT

"

1 +
� NX

i =1

r i

�
� @Uint

@r i

� #

(2.24)
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In a system consisting ofN particles, the interaction potential Uint , which is in�uenced

by the coordinates of all particlesr i , can be expanded into a series of terms representing

x-body interactions.

Uint (r1; :::; rN ) =
NX

i<j

Uij (r i ; r j ) +
NX

i<j<k

Uijk (r i ; r j ; r k ) + ::: (2.25)

By substituting Equation 2.24 into Equation 2.25 and categorizing the terms based on

interaction order, the virial equation is derived. This equation introduces the concept

of volume virial coe�cients (B; C; :::) that relate the macroscopic properties of pressure,

volume, and temperature to the interaction potentials originating from x-body interactions.

pV
kB NT

= 1 +
NB
V

+
N 2C
V 2 + ::: (2.26)

As the order of interactionsx increases, the impact of the interaction terms on the average

virial becomes progressively smaller. It is customary to truncate the expansion, typically

at x = 2 , as the higher-order contributions become negligible. This simpli�cation allows

for more practical estimation of the total force arising from particle interactions.(41, 42)

2.4 Stages of the MD Simulation Process

The objective of MD simulations is to investigate the dynamic behavior of molecular sys-

tems at the atomic level. This involves iteratively propagating the positions of atoms

(denoted asr (t)) over a time interval from an initial time point t to a �nal time point

t + � t. The time interval � t is chosen to be signi�cantly smaller than the characteristic

timescale of motion within the system. This propagation is achieved by numerically in-

tegrating Hamilton's equations of motion using speci�c algorithms known as integrators.

Examples of integrators include the Verlet algorithms, such as Simple, Leap-Frog, and Ve-

locity Verlet, as well as other techniques like Runge-Kutta and Gear-Predictor correctors.

The Velocity Verlet algorithm, renowned for its stability and time-reversal properties, has

been implemented in the Nanoscale Molecular Dynamics (NAMD) program.(39, 43, 44)

2.4.1 Velocity-Verlet Algorithm

NAMD employs the Velocity-Verlet integration method to advance atomic velocitiesv i (t)

and positions r i (t). The implementation involves computing the intermediate positions at

a given time point t + � t
2 around the initial time t. The accelerations at each timestep
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t are then calculated based on the corresponding forcesF (r i (t)) , as described by Equa-

tion 2.14.(32, 45, 46)

v i

�
t +

� t
2

�
= v i (t) +

� tai (t)
2

(2.27)

The obtained velocities are subsequently employed to determine the positionsr i at a given

time t + � t.

r i (t + � t) = r i (t) + � tv i

�
t +

� t
2

�

= r i (t) + � tv i +
� t2ai (t)

2

(2.28)

The updated positions are sequentially utilized to modify the accelerationsai (t + � t) and

propagate the corresponding quantityv i .

v i (t + � t) = v i (t +
� t
2

) +
� tai (t + � t)

2

= v i (t) +
� t[ai (t) + ai (t + � t)]

2

(2.29)

In the following the di�erent steps to run dynamics are explained:

1. To compute r (t + � t), it is necessary to have a collection of initial positions, referred to

as r i (t), as well as velocities denoted byv i (t). Based on these initial conditions, internal

coordinates referred to asr j , which encompass bond lengths, bond angles, and dihedral

angles, can be determined. At the start of a simulation with t = 0 , it is necessary to

provide input coordinates obtained from experimental databases or quantum mechanical

calculations. In cases where initial velocities are not explicitly speci�ed, they are assigned

probabilistically using values � v i derived from a Boltzmann distribution of velocities de-

noted asv i , and they correspond to the desired simulation temperatureT. The assigned

values are adjusted to ensure that the total momentum denoted asp is maintained at zero.

� v i =
�

mi

2�k � BT

�
e

�
m i v 2

i
2k B T (2.30)

p =
NX

i

mi v 2
i (2.31)

2. In classical molecular dynamics simulations, force �eld parameters are employed to

calculate the system's potential energy by summing the interaction potential terms. This

potential energy surface enables the determination of forces acting on particles based on

its functional form.
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3. The force magnitude is determined by the gradient of the potential energy surface at a

speci�c point r . If U only depends on one given internal coordinate,r , the force can be

obtained by taking the derivative with respect to that coordinate.

F = �
dU(r )

dr
(2.32)

4. Given the knowledge of the forces,Fi , acting on individual particles, the corresponding

accelerationsai can be determined (as described in Equation 2.5).

5. After the evaluation of ai , an integrator is employed to update the positions and

velocities of atoms.

2.5 Periodic Boundary Conditions

The maximum number of atoms that can be simulated in MD falls within the range of105

to 106. For a cubic simulation box, the ratio of surface atoms to the total number of atoms

is determined by the length of the box. (47, 48)

N / L 3 Ns / 6L 2 =) Ns / 6N
2
3 (2.33)

In a system with 106 atoms, approximately 6% of these atoms are located at the surface.

However, real physical systems often consist of a much larger number of particles. For

example, one mole of atoms in a cubic box contains only about7 � 10� 6% surface atoms.

In the case of the smaller system, the contribution of surface interactions to bulk properties

cannot be ignored. To simulate bulk behavior, periodic boundary conditions are applied,

creating an in�nite system by replicating the original simulation box in a three-dimensional

array. Each image atom behaves as if it were in the original box, identi�ed by the cell vector

n(0; 0; 0). Interactions are considered not only within the primary cell but also between

periodic images separated by a multiple byn of the box length (L ). The prime notation

in Equation 2.34 indicates the exclusion of interactions between an atom and itself within

the original cell.

U =

0X

n

NX

i =1

NX

i =1

U(
�
�r ij + nL

�
�) (2.34)

The computation of in�nite sums is avoided by considering only short-range interactions

within a de�ned cuto� radius. Beyond this radius, the contributions of these interactions

are assumed to be negligible. However, long-range interactions cannot be treated in the

same manner. Their calculation requires methods that approximate in�nite sums. The
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Ewald summation approach is commonly used to evaluate long-range electrostatic poten-

tials.

2.6 Temperature Regulation in the Isothermal Ensemble

In order to simulate realistic experimental conditions, it is often preferable to conduct

simulations at a constant temperature T rather than maintaining constant total energy.

In a closed system with a constant volumeV and temperature, the canonical distribution

function indicates that lower energy states are more probable than higher energy states.(49,

50)

� (i ) =
e

� E i
k B T

P N
i =1 e

� E i
k B T

(2.35)

In an NVT simulation, temperature control is implemented through periodic adjustments

at speci�ed time intervals � t. The aim is to maintain a constant temperature throughout

the simulation. This can be achieved by two methods: rescaling the velocities of particles

within the system based on Equation 2.20, or allowing energy exchange between the system

and an external thermostat or heat bath, resulting in �uctuations in the total energy.

The Andersen method is an example of the latter approach, which involves simulating

random collisions with particle walls and reassigning velocities of a fraction of particles

to values chosen from a Boltzmann distribution of velocities for the target temperature.

The number of particles to which rescaling is applied is governed by the collision frequency

parameter f. Temperature regulation can be achieved through the adjustment of particle

velocities using a scaling factor� , which is the basis for methods such as velocity rescaling

and the Berendsen barostat. In the velocity rescaling method, the scaling factor� V R is

determined by the ratio between the actual temperatureT(t) and the target temperature

Tset. The Berendsen algorithm includes an additional coupling parameter,� t=� , as part

of its formulation represented by the parameter� B . � is known as the "rise time," which

controls the strength of coupling between the heat bath and the system. As� ! 1 the

coupling is gradually removed, and the system becomes decoupled from the heat bath.(51)

vnew
i = � v old

i (2.36)

� V R =
�

Tset

T(t)

� 1
2

� B =
�
1 +

� t
�

�
Tset

T(t)
� 1

�� 1
2

(2.37)

In the present simulations, the temperature was maintained using the Langevin thermostat

which expands upon the equation of motion for momenta (Equation 2.11) by incorporating
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two additional forces: a friction coe�cient 
 and a random forceR(t). These forces account

for the system's viscosity and random collisions among particles. The random force is

generated from a Gaussian distribution with a mean value of zero and an average value of

zero. So, It is important to highlight that the width of the Gaussian distribution for the

random force and the value of the friction coe�cient rely on the temperature.(52)

dp i

dt
=

@U
@q i

� 
 p i + R(t) (2.38)

2.7 Control of Pressure in the Isothermal-Isobaric Ensemble

In order to capture realistic experimental conditions, it is often preferable to simulate

systems in the isothermal-isobaric ensemble, where both temperature and pressure are

kept constant. This ensemble provides a more accurate representation by considering the

probabilities of states with speci�c values of temperature and pressure, denoted as� and

T respectively. (53, 54)

� (i ) =
e

� E i + pv i
k B T

P N
i =1 e

� E i + pv i
k B T

(2.39)

The probability of �nding the system in a speci�c state at pressure p is in�uenced by

the volume of the simulation cell. The relationship between pressurep and volume V is

described by the virial equation of state (Equation 2.26). To control both pressure and

temperature, a combination of a barostat for adjusting the cell volume and a thermostat for

modulating temperature can be used. In our simulations, the pressure was regulated using

the Langevin Nosé-Hoover algorithm. This algorithm extends the concept of the Andersen

barostat, where a closed system is connected to a piston with massM and subjected to an

external pressure� , resulting in uniform expansion or contraction of the simulation box.

The � piston corresponds to the desired pressure of the system. The equations of motion

for this method are formulated as follows:(55, 56)

dq i

dt
=

@K
@p i

+
1
3

q i
dlnV

dt
(2.40)

dp i

dt
=

@U
@q i

�
1
3

p i
dlnV

dt
(2.41)

d2V
dt2 =

1
M

2

6
6
4

�
2
3

P N
i =1 K i � 1

3

P N
i =1 F i :r i

�

V| {z }
= p(t )

� �|{z}
= pset

3

7
7
5 (2.42)
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d2V
dt2 =

1
M

(p(t) � pset) (2.43)

The Langevin Barostat method incorporates a collision frequency
 and a random force

R(t) into Equation 2.42, which governs the �uctuations in the volume of the simulation

box. Similar to the Langevin thermostat, the random force is sampled from a Gaussian

distribution with a mean value and average of zero.(56)

d2V
dt2 =

1
M

�
p(t) � pset + 


dV
dtR (t)

�
(2.44)

2.8 Force Field

The Born-Oppenheimer approximation enables the separation of nuclear and electronic

components in a system. Classical potential models in molecular mechanics force �elds

focus on the nuclear terms and approximate the electronic contributions. These force �elds

incorporate parameters for calculating interatomic interaction energies, which are derived

from experimental data or quantum mechanical calculations. Atom types are assigned to

each atom based not only on their atomic number but also on their chemical environment.

For instance, a carbon atom in an aromatic ring is categorized di�erently from a carbonyl

carbon. In simulations of biological systems, popular force �elds include CHARMM and

the Assisted Model Binding with Energy Re�nement (AMBER). (57) The total potential

energy,U, is typically divided into bonded Ub and non-bondedUnb contributions. (58, 59)

U =
NX

i =1

Ui;b +
NX

i =1

Ui;nb (2.45)

2.8.1 Bonded Intractions

The interactions between covalently bonded atoms can be divided into bondUbond, angle

Uangle , and dihedral angle Udihedral terms, representing 2-, 3-, and 4-body interactions,

respectively. These terms contribute to the overall potential energy of the system and play

a crucial role in describing the behavior of molecules.(44)

NX

i =1

Ui;b =
NX

i>j

Uij;bond +
NX

i>j>k

Uijk;angle +
NX

i>j>k>l

Uijkl;dihedral (2.46)

Bond terms in molecular simulations are described by a harmonic potential, where the

spring constant represents the bond sti�ness. The interatomic distance between atoms

i and j is denoted asRij , while the equilibrium distance is represented byR0. This
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harmonic oscillator approximation accurately captures the bond stretching contribution

and quanti�es the bond's strength and deviations from its equilibrium position.

Uij;bond = kb (Rij � R� )2 (2.47)

Angle terms in molecular simulations are modeled using a harmonic potential, similar to

the bond terms. The angular bending term, represented byUangle , involves three atomsi ,

j , and k. The angle � is measured between the vectorsr ij and r jk , while � 0 denotes the

equilibrium angle. Additionally, the Urey-Bradley term accounts for a spring-like interac-

tion between two atoms i and k that are not directly bonded. The separation distance

between them is denoted byRik , while the equilibrium distance and spring constant are

represented byRub and kub, respectively.(45)

Uijk;angle = k� (� � � 0) + kub(Rij � Rub)2 (2.48)

Dihedral terms in molecular simulations account for the interactions between atom pairs

that are part of three consecutive bonds forming a dihedral angle. These interactions are

computed using an angular potential between two planes formed by atomsi , j , k, and j ,

k, l , where  represents the angle enclosed by the planes.

If a � 0 :

Uijkl;dihedral = kd (1 � cos(a + ' ))
(2.49)

(2.50)

For periodic dihedral potentials, the integer a > 0 speci�es the periodicity order. In such

cases,' denotes the phase shift angle andkd serves as a multiplicative constant.

2.8.2 Non-Bonded Interactions

The total nonbonded potential can be divided into three components: long-range electro-

static interactions denoted asUcoulomb, short-range van der Waals interactions labeled as

UvdW , and repulsive interactions referred to asUrep .(60)

NX

i =1

Ui;nb =
NX

i>j

Uij;Coulomb +
NX

i>j

Uij;vdW +
NX

j>j

Uij;rep (2.51)

Electrostatic interactions , known as Coulomb interactions, arise from the electrostatic

forces between point chargesq of two atoms i and j . These interactions are in�uenced by

the dielectric constant " , which represents the solvent's screening e�ect.(61, 62)

Uij;Coulomb =
1

4�"
qi qj

Rij
(2.52)
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The energy term related to electrostatic interactions exhibits attraction between opposite

charges and repulsion between equal charges. Although the strength of this interaction de-

creases with increasing distance between atoms (Rij ), it remains signi�cant even for atoms

that are far apart.

The Ewald summation method is employed to accurately compute electrostatic in-

teractions. This approach resolves the slow convergence and dependency on summation

order. By introducing Gaussian charge distributions and considering their interactions

with point charges, the long-range electrostatic interactions are e�ectively transformed

into short-range interactions.(63, 64) This simpli�es the calculation process and allows for

the accurate determination of electrostatic energies. Additionally, a compensation scheme

involving additional Gaussian functions with opposite signs is employed to account for

the introduced charge distributions. Overall, the Ewald summation method enables the

decomposition of the electrostatic energy into three distinct terms, facilitating the analysis

of electrostatic interactions. (65, 66)

UCoulomb = Udirect + Ureciprocal + Ucorrection (2.53)

Udirect =
1
2

X

n

NX

i =1

NX

j =1

qi qj

Rij + jnj
erc (�R ij + jnj) (2.54)

erfc (x) = 1 � erf (x) =1 �
2

p
�

Z x

0
e� t2dt (2.55)

Ureciporcal =
1

2�U

NX

i =1

NX

j =1

qi qj

X

m6=0

e� ( � m
� )+2 � m R ij

m 2 (2.56)

Ucorrection = �
�

p
�

NX

i =1

q2
i (2.57)

The inclusion of the Gaussian error function term ( Equation 2.54) in Equation 2.53 ensures

a rapid decay asn ! 1 increases. The reciprocal space vectorm is determined through the

Fourier transform of the real space cell vectorn. The correction term Ucorrection takes into

consideration the width of the Gaussian function distributions used in the computation.(67,

68, 69)

Van der Waals' and repulsion interactions , The van der Waals' potentialsUvdW which

are responsible for attractive interactions, arise from the interaction between �uctuating

instantaneous and permanent dipole moments.(67, 70)

UvdW / � R� 6
ij (2.58)
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The repulsion energy termUrep arises from the repulsion between overlapping electronic

orbitals at very short separations, and it increases as the distance decreases. This contri-

bution cannot be accurately described without employing quantum mechanics.

Figure 2.1: Van der Waals, repulsive, and Lennard-Jones potential energy functions depict
with " and � . The term " denotes the potential depth and � refers to the distance at which
the energy is zero.

The short-range interactions are typically represented using model potentials that incorpo-

rate both the repulsive and attractive energy terms mentioned above. One commonly used

model is the Lennard-Jones potential,ULJ , as shown in Figure 2.1. At short distances, the

repulsive term dominates the interaction energies, while at larger distances, the attractive

van der Waals' term becomes more signi�cant. This leads to a minimum in the potential

energy curve at intermediate separations. The parameter" and � represent the well depth

which measures how strongly the two particles attract each other and the distance at which

the intermolecular potential between the two particles is zero. The values of" and � can

be calculated based on the respective parameters of the two atoms.(67)

ULJ = " ij

" �
� ij

Rij

� 12

�
�

� ij

Rij

� 6
#

(2.59)
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3

Computational Details

The computational goal of this thesis work is to massively run molecular dynamics simu-

lations of the protein embedded in a lipid bilayer and solvated by molecules of water. In

this way, we can focus on utilizing the ORF3a channel as a model system to investigate the

conduction of ions. Here, we describe the methods used to study the Sars-Cov-2 ORF3a

and provide comprehensive details of the classical molecular dynamics (MD) simulations

conducted, including details on the trajectory processing methods employed. Furthermore,

the computational approaches employed in constructing the SARS-CoV-2 ORF3a model

will be outlined.

3.1 Design and construction of model

It involves preparing the initial state of the system for input into the simulation package,

which includes constructing a starting structure. There are a variety of ways to prepare

a system depending on not only its composition but also the information available about

the initial structure of the system. Due to this, each system requires a unique set of tools

and considerations during this step. The preparation of a system consists of two logical

components, which are to construct the system's con�guration in the desired chemical state

and to apply the necessary force �eld parameters for the system to function as desired.

During the system preparation step in molecular dynamics simulations, it is necessary

to have a good starting structure. At the thermodynamic state point of interest, the

starting structure should be similar to the equilibrium structure of the system and avoid

energetically unfavorable con�gurations.

In order to prepare the input �les for the simulation system, we utilized the CHARMM

GUI input which was done by using the CHARMM-GUI Bilayer Builder generator to
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prepare the input �les from the Sars-CoV-2 ORF3a structure obtained from PDB code

(https://www.rcsb.org/).(71, 72) This was accomplished by embedding the protein into a

DOPE (dioleoylphosphatidylethanolamine) lipid bilayer. The protein was �rst correctly

aligned along the z-axis using the Operations of Protein in Membranes (OPM) database.

Then, in order to create a simulation box, we need to determine the type and size of the

box. There are several factors that can a�ect the length of the Z-axis, such as the thickness

of the water. As a result, the default value for the thickness of water has been established

at 22.5 Å.To establish the length of XY, it was set to 60 Å. This table illustrates some of

the many features we applied to build up the structure Table 3.1:

Calculated Number of Lipids (n)

Lipid Type UpperLea�et

Number

LowerLea�et

Number

DOPE 36 42

Calculated XY System Size

Upperlea�et LowerLea�et

Protein Area (Å 2) 1364.62079 961.78849

Lipid Area (Å 2) 2282.4 2662.8

# of Lipids (n) 36 42

Total Area (Å 2) 3647.02079 3624.58849

Table 3.1: System info

This simulation Figure 3.1 (PBD ID: 6XDC) was carried out using the following ionic

condition (21); NaCl 0.15M, KCl 0.15M, and CaCl2 0.15M.
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Figure 3.1: The components of the simulation box. protein is represented in blue and red
(cartoon), lipid bilayer in cyan (line), chloride ion in cyan, sodium in yellow, potassium in
brown, and calcium in orange (sphere). The positive z-axis is shown in the blue arrow.

3.2 Steps of Molecular Dynamics Simulations

MD were performed using the NAMD software package. It is feasible to study biomolecules

through the use of the many force �elds available, such as OPLS, AMBER, CHARMM,

GROMOS, etc. (57, 73). As a �rst step, we performed an energy minimization for 5000

steps in order to drive the system to the local minimum. It is crucial in molecular sim-

ulations that the minimization or relaxation process be performed in order to obtain a

local minimum in the energy of the starting structure, which prevents the simulation from

"blowing up" due to the large forces on atoms. Standard minimization algorithms such as

steepest descent are employed during this process. To begin the simulation, velocities must

be assigned randomly because minimization only provides the �nal positions of atoms. It

is usually done in a way that ensures the correct Maxwell-Boltzmann distribution at the

desired temperature. It is not crucial what the exact assignment process is since the ques-

tion of the correct distribution will quickly arise naturally from the equations of motion.

Nevertheless, Newtonian dynamics conserve the momentum of the center-of-mass of the
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simulation box, so the center-of-mass velocity is usually removed from all particles after

the random assignment has been conducted to protect the simulation box from drifting.

(48) We carried out the minimization and heating step by using the canonical ensemble

(NVT ensemble) at 303.15 K and 1.01 bar with a timestep of 2 fs, in which we used the

equation of state. By using the SHAKE algorithm (74), it was possible to keep the lengths

of hydrogen bonds �xed. We set the van-der-Waals' cuto� radius, switching distance, and

the pairlist distance to be 12.0 Å, 10 Å, and 16 Å, respectively. In both the equilibration

and production steps, it is acknowledged that electrostatic interactions are calculated us-

ing the particle-mesh Ewald (PME) method (75), with a grid spacing of 1.0 units. Force

calculations for protein and lipids were based on the CHARMM36 force �eld and those

of water on the TIP3P model. (76, 77) The Lennard-Jones parameters for the ions were

taken from the parameterization made by Joung and Cheatham (78). Another important

factor is that the system was powered with an external electric �eld of -23.065 kcal/mole

in order to accelerate the crossing of the ions by controlling the electric �eld.

3.2.1 Equilibration Runs

A molecular simulation involves running simulations in a particular thermodynamic ensem-

ble and gathering unbiased data for analysis at a speci�c state point. There are four steps

involved in this process in order to bring the system to the appropriate state point and

relax away from any arti�cially induced metastable starting state. Our aim is to sample

the most relevant con�gurations of the equilibrium ensemble. It should be noted, however,

starting in a less stable con�guration may require a longer equilibration time to reach

the most relevant con�guration space, which can be extremely di�cult for biomolecules

or systems at phase equilibrium. It is necessary to bring the system to the target state

point during the equilibration process.(39, 45)The �rst two steps of equilibration were car-

ried out using the NVT (constant number, volume, and temperature) ensemble, and the

last two steps were carried out using the isothermal-isobaric ensemble (NPT), constant

number, temperature, and pressure. During the simulation, the temperature and pressure

were adjusted with the help of a Langevin thermostat (damping coe�cient 1 ps� 1), and

barostat (in the last two equilibration steps, the piston period was 50 fs, and the piston

decay was 25 fs in up to 100000 running steps).
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3.2.2 Production Runs

Once equilibration has been completed, the production phase begins, in which data is

collected for analysis. Prior to production, it is important to perform an equilibration that

is appropriate to the target production ensemble before moving forward with production,

and data should never be collected and recorded immediately after a change in conditions.

Analyzing the production requires the computation of observables and the assessment of

the uncertainty that is associated with those properties.(39, 48)

The production runs were carried out using the NPT (constant number, temperature, and

pressure) ensemble. Temperature and pressure were controlled with a Langevin thermostat

(damping coe�cient 1 ps� 1) and barostat (piston period 50 fs, piston decay 100 fs). The

production runs within our system till 461 ns. It is important to keep in mind that the

simulation of biomolecules requires a very long simulation, therefore it is intended to speed

up the permeation of ions through the simulation by using an external electric �eld. The

electric �eld is a physical quantity that describes the in�uence of electric charges on other

charged particles or objects. By applying an external electric �eld to biomolecules, the

simulation can be accelerated, allowing for faster results. This approach is particularly

useful when capturing rare events or phenomena that may occur over long timescales.(79)

The speci�c implementation of the external electric �eld can be customized based on the

study objectives, including factors such as �eld strength and direction. Figure 3.2 illustrates

the key commands utilized to apply an external electric �eld. The electric �eld in this

simulation was set up to drive the ions from the intracellular region to the extracellular

region. The eFieldNormalized command plays a crucial role in adjusting the electric �eld

vector by considering the cell basis vectors. When set to "yes," this command ensures that

the constant electric �eld forces applied are not taken into account during the pressure

calculation. This approach allows for a more accurate assessment of the pressure solely

based on the inherent molecular interactions, excluding any in�uence from the externally

applied electric �eld forces. In addition, take into account that NAMD uses the unit of

kcal/(mole) as a unit of measurement.

Figure 3.2: The segment of the NAMD input �le speci�es the application of the external
electric �eld.
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4

Discussion and Results

This chapter is dedicated to presenting the results of the data analyses performed to

evaluate the in�uence of external electric �eld strength on the ion conduction and to

quantify ion �ux. Through a meticulous examination simulation results, we have gained

valuable insights into multiple aspects, including water solvation, and the intricate interplay

between ions and positively and negatively charged residues.

4.1 System Model

In this investigation, we applied the external electric �eld to the SARS-CoV-2 ORF3 ion

channel with the aim of exploring its impact on ion conduction dynamics (Figure 4.1).

The ion channel plays a critical role in facilitating various viral functions and is, therefore,

a key component in viral infection. Our computational �ndings exhibited a signi�cant

augmentation in ion conduction when the electric �eld was applied. By subjecting the ion

channel to an external electric �eld, featuring a positive charge in the intracellular space and

a negative charge in the extracellular space, our objective was to expedite the process of ion

conduction. The empirical observations underscore the critical role of the external electric

�eld in enhancing the conduction of ions within the SARS-CoV-2 ORF3 ion channel. This

phenomenon holds potential implications for viral pathogenesis, particularly in relation

to vital processes including viral replication, assembly, and release. The observation that

anions predominantly pass through a channel intended for cations indicates a potential

�aw in the model. However, due to the identi�ed failure in our simulations, we cannot

claim the participation of anion conduction in the viral life cycle. Through thorough and
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