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Abstract

Photoswitches are becoming increasingly popular in pharmacology due to the possibility of
modifying their activity with light. Hence, it is crucial to understand the photophysics of these
compounds and their interactions with the biological environment to identify promising light-
activated drugs. Azobenzene derivatives are the most widely used class of photoswitches
to date. Upon light irradiation, they photoisomerize from the trans to the cis conforma-
tion. In the context of ion channels, one of the conformations may block ion conduction,
while the other allows the flow of ions. In this way, light can control ion current through
the channel and, consequently, the action potential in excitable cells. In this work, two
binding pockets of DADH2+

2 , a diprotonated azobenzene derivative, in the cardiac sodium
channel (NaV 1.5), were obtained by means of molecular dynamics simulations and enhanced
sampling techniques. The interactions of DADH2+

2 with the most relevant residues in the
NaV 1.5 channel were of electrostatic nature. Moreover, the absorption spectra of DADH2+

2 ,
DAD (its neutral species) and azobenzene were calculated in the gas phase, solvent and in
the NaV 1.5 binding pockets, using quantum (TDDFT and CASSCF/CASPT2) and hybrid
QM(TDDFT)/MM and QM(TDDFT)/PCM approaches. In all cases, the bright excitation
corresponded to the electronic transition to the S2 state, of ππ∗ character. Interestingly, the
excitation energies were highly dependent on the environment and the protonation state.
Then, the trans- cis photoisomerization mechanisms were computed in the gas phase and in
solvent, using TDDFT and QM(TDDFT)/PCM. After excitation to ππ∗, the system relaxes
and crosses to the S1 state, of nπ∗ character. In this surface the C-N=N-C dihedral rotates
until reaching the ground state, where it may convert to the cis isomer or go back to the trans
conformation. As for the excitation energies, it was found that the photoisomerization was
also highly dependent on the environment.



Resumen

Los photoswitches son cada vez más populares en farmacología debido a la posibilidad de
modificar su actividad con luz. Por tanto, es crucial ententer su fotofísica y sus interacciones
en medios biológicos para identificar compuestos que puedan potencialmente usarse como
fármacos activados por luz. Actualmente, los derivados de azobenceno son los photoswitches
más conocidos. Tras la irradiación con luz, los derivados de azobenceno fotoisomerizan de la
conformación trans a la cis. En el contexto de los canales iónicos, una de las conformaciones
puede bloquear la conducción iónica, mientras que la otra permite el paso de iones. De
esta forma, la luz puede controlar el flujo de iones a través del canal y, en consecuencia, el
potencial de acción en células excitables. En este trabajo, se han encontrado dos sitios de
unión del DADH2+

2 , (derivado de azobenceno diprotonado), en el canal de sodio cardiaco
(NaV 1.5), mediante cálculos de dinámica molecular clásica y acelerada. Además, se ha
obtenido el espectro de absorción del DADH2+

2 , DAD (su especie neutra) y azobenceno
en fase gas, disolvente y en los sitios de unión del NaV 1.5, utilizando métodos cuánticos
(TDDFT y CASSCF/CASPT2) e híbridos (QM(TDDFT)/MM y QM(TDDFT)/PCM). En
todos los casos, la excitación brillante se corresponde con la transición electrónica al estado
excitado S2, de carácter ππ∗. Cabe destacar que las energías de excitación en estos sistemas
dependen enormente del medio y del estado de protonación. A continuación se calcularon
los mecanismos de fotoisomerización trans- cis en fase gas y disolvente, utilizando TDDFT
y QM(TDDFT)/PCM. Después de la excitación al estado ππ∗, el sistema se relaja y cruza al
estado S1, de carácter nπ∗. En esta superficie, se produce la rotación del dihedro C-N=N-C
hasta alcanzar el estado fundamental S0, donde el photoswitch puede convertirse en el isómero
cis o volver a la conformación trans. De la misma manera que las energías de excitación,
los mecanismos de isomerización también dependen del medio en el que se encuentran las
moléculas.
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Introduction

Ion transport across cell membranes underlies many essential biological processes, such
as nerve impulse transmission, muscle contraction, blood pressure regulation, and fluid
secretion by some organs[1]. The flow of ions between the extracellular and the intracellular
environments is controlled by the pore opening/closing of the voltage-gated ion channels in
response to the variation of the transmembrane electrostatic potential. The resulting ionic
current in the channel induces further ionic transport in neighbouring channels and, hence, it
generates an action potential that is propagated along the membrane and contiguous excitable
cells.[2]

Many anaesthetics target ion channels in pain sensing neurons with the aim of blocking action
potentials and hampering pain signal propagation to the brain.[3] Similarly, the treatment
of certain arrhythmic disorders addresses ion channels in cardiomyocytes (cardiac muscle
cells), allowing a more precise control of heart rhythm.[4] However, ion blockers usually
present low selectivity and may block ion channels in undesired excitable cells (neurons and
muscle cells), causing severe side effects.[5] The use of photoswitchable drugs prevents this
from happening as they are activated by light when and where it is most convenient. This
permits a spatio-temporal control that is not possible with conventional drugs.[6]

In this section the concepts of photopharmacology and azobenzenes, a very well known
class of photoswitches, will be introduced. Then, ion channels will be presented, and more
specifically, the structure of voltage-gated sodium channels and their interactions with both
conventional and photoswitchable ion blockers. Finally, the main goals of the present project
will be stated.
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1.1 Photopharmacology

The ultimate goal of pharmacology is providing safe and effective drugs to improve health
conditions. However, the environment in which drugs act after their administration is com-
plex and may involve multiple interactions with different proteins, lipids, DNA strands and
other biomolecules (broad selectivity), leading to undesirable side effects. Therefore, rational
design aiming at narrowing drug selectivity is a major line of research in pharmacology
nowadays.[7] Moreover, this widespread distribution of the drug activity, along with the poor
control of the duration of action, often results in increased tolerance to drugs, or even drug
resistance, due to excessive exposure.[8] Possibly one of the most concerning drug resistance
phenomena is antibiotic resistance, which is one of the biggest threats to global health today
and, although it is a natural process that we cannot avoid, it is possible to slow it down by
limiting the time exposure and location to what is strictly necessary.[9]

In the last few years, photopharmacology has emerged as a way to tackle these issues.[10]
It consists in the use of light-activated compounds to treat diseases, which allows a more
precise spatio-temporal control given that their activation depends on the wavelength and
the intensity of the irradiated light.[11] Light-activated drugs can be divided in phototriggers
and photoswitches. The former are bioactive compounds that are bonded to photosensi-
tive protecting groups. After irradiation, the photosensitive group is removed, leaving the
main molecule active until degradation (irreversible change).[12] On the other hand, light
induces reversible changes in photoswitches as they normally involve isomerization pro-
cesses (photoisomerizations).[11] The latter, which are the subject of this work, are more
convenient since phototriggers present the same disadvantages as conventional drugs after
their activation (Figure 1.1).

Fig. 1.1 Schematic representation of the activity of conventional drugs, phototriggers and
photoswitches. Conventional drugs are always active, phototriggers become active after
irradiation and photoswitches are only active while and where they are irradiated.
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To ensure the effectiveness and safety of light-activated compounds, the drug conformation
after irradiation should be biologically active only in the desired target, whereas the other
conformation, or dark conformation, needs to be inactive and non-toxic everywhere. More-
over, the photoactivation wavelength should ideally be located in the visible region of the
electromagnetic spectrum, avoiding ultraviolet (UV) light, and long enough to penetrate
tissues. In addition, high oscillator strengths in the bright electronic excitations, as well
as a good quantum yield of photoisomerization, are convenient to avoid the need of high
intensity light for the photoactivation. Finally, back-photoisomerization from the active to
the inactive conformer should take place at a wavelength different from the photoactivation
or thermally. In this sense, having higher energy active conformations conveniently allows
thermal relaxation to the lower energy inactive isomers without the need of light.[11]

1.2 Azobenzenes as photoswitches

Azobenzene derivatives (ABs) are the most widely used photoswitches to date as they fulfill
most of the requirements stated in the previous section. Azobenzene (AB) exists in both cis
and trans conformations (Figure 1.2). The trans conformation is more stable than the cis and
thus the former is more abundant in the dark.[13]

Fig. 1.2 AB isomerization reaction. The trans→cis isomerization occurs upon ligth irradiation
(hν) whereas the cis→trans can occur both thermally (kT ) and photochemically (hν).

The trans-AB absorption spectrum consists of two bands in the UV-vis region: a very strong
band at λmax = 330 nm corresponding to the bright ππ∗ S2 excitation, and a much weaker
and wider one at λ around 430 nm that is attributed to the dark n → π∗ S1 transition. [14] On
the other hand, the cis-AB absorption spectrum presents only one band in the visible region,
around 450 nm, which corresponds to the S1 n → π∗ transition and whose intensity is low.
Then, the S2 ππ∗ transition is located at 260 nm.[13]

Most studies suggest that the conformational change occurs in the dark S1 (nπ∗) state,
which can be populated after direct excitation or after internal conversion from the bright
S2 (ππ∗) state (Figure 1.3).[15] Due to its lower oscillator strength, direct excitation to the
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S1 (nπ∗) state is much less probable than S2 (ππ∗) excitation. Moreover, different quantum
yields are observed depending on the excited state that is populated first: 0.20-0.27 for
S1 (nπ∗) excitation and 0.09-0.12 for S2 (ππ∗). This suggests that AB follows different
isomerization mechanisms depending on the excitation wavelength and that more pathways
may open when the photoswitch is excited to the S2 state.[16, 17] The isomerization mecha-
nisms are still subject of debate and the most popular ones are rotation, inversion, concerted
inversion and inversion-assisted rotation (Figure 1.4).

Fig. 1.3 Schematic representation of the azobenzene trans → cis photoisomerization after
ππ∗ excitation.

For a long time, it was thought that excitation to the S1 (nπ∗) state followed an in-plane inver-
sion at one of the two nitrogens of the azobenzene (inversion), whereas excitation to the S2

(ππ∗) state followed rotation or twisting around the N=N bond. According to this hypothesis,
the most probable excitation (S2) lead to a rotation in the ππ∗ state that could evolve towards
a radiationless decay to the trans-AB ground state or to internal conversion to the S1 (nπ∗)
state, where isomerization is only possible through inversion.[18] This bifurcation explained,
for the first time, the difference in the quantum yields. Later on, mixed mechanisms, such
as concerted inversion, inversion-assisted rotation and rotation helped by the opening of the
CNN angles, were proposed. In fact, dynamic studies usually support these isomerization
pathways.[19]

The most recent studies focus on the potential energy surface (PES) along the nπ∗ state
and, contrary to previous beliefs, they agree that rotation is the main reaction coordinate in
the S1/S0 internal conversion, which is then followed by isomerisation in the ground state
(Figure 1.3).[20] Then, cis-AB thermally converts back to the trans-AB through an inversion
mechanism. This process shows a large energy barrier which results in a long cis-AB lifetime.
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Fig. 1.4 Azobenzene trans-cis isomerization mechanisms.

On the other hand, the main coordinate of relaxation in S2 leads to a minimum where the
CCNN and NNCC dihedral angles are in a pedal-like conformation. In this geometry, both
S1 and S2 are degenerate and, furthermore, its structure is very close to the Franck-Condon
(FC) geometry (ground state of the trans isomer), explaining the high S2 → S1 quantum yield
observed in experiments. After the internal conversion, the most favorable pathway involves
the same rotated S1/S0 conical intersection (CI) from the nπ∗ PES. [15]

The S2 PES also shows alternative deactivation pathways that may explain its lower quan-
tum yield.[15] Moreover, the energy excess after the S2/S1 internal conversion also opens
additional deactivation mechanisms in the nπ∗ PES, decreasing the quantum yield after the
bright S2 excitation.[13]

One way of improving the yield in the photoisomerization is the functionalization of azoben-
zene. For example, adding a electron donor substituent, such as an amino group in ortho or
para positions, would improve the quantum yield due to the S2 red-shifting. As a result, the
excitation energy decreases and, most likely, relaxation will not follow alternative pathways.
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Moreover, the required radiation is less harmful, penetrates better in the tissues and, in
addition, thermal isomerization is also faster because the additional donor groups decrease
the energetic barrier.[13]

This work focuses on the study of the azobenzene derivative diethylamino-azo-diethylamino
(DAD), depicted in Figure 1.5. DAD is a photoswitch that exists in both deprotonated or
protonated forms. The deprotonated state can diffuse rapidly across biological barriers due to
its non-polar nature, making it convenient to target transmembrane proteins like ion channels
(more on this in the following sections). Regarding the photoisomerisation, the most abundant
isomer in the dark, the trans-DAD, may turn into its cis isomer upon irradiation with 454 nm
light. Then, the cis-DAD relaxes back to the trans-DAD in the dark within 200 ms.[21]

Fig. 1.5 Chemical structure of the deprotonated azobenzene derivative DAD. Protonation
occurs in the tertiary amino groups, except in the one that is next to the aromatic ring.

1.3 Ion Channels

Ion channels are transmembrane proteins that selectively control ion transport (primarily
K+, Na+, Ca2+, H+ and Cl−) between the extracellular medium and the cytoplasm (Figure
1.6). They consist of protein domains that collectively form a selective pore filled with water
through which specific ions can flow in response to mechanical forces, chemical stimuli,
temperature changes or voltage variations. Voltage gated ion channels respond to changes in
the membrane potential and are essential for neuronal transmission and muscle contraction,
among other functions.[22] When the excitable cells are in their resting state, the pore in the
ion channels is closed in order to keep the membrane potential constant. Their opening, in
response to voltage variation, may lead to the membrane depolarization, which further in-
duces the opening of neighbouring channels and results in the action potential propagation.[2]

Figure 1.7 shows the voltage profile of the membrane during the neuronal action poten-
tial. The membrane potential, i.e., the electrical potential difference across the membrane
measured relative to the extracellular environment, is kept constant at around -70 mV in
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Fig. 1.6 Schematic representation of an ion channel in a lipid membrane.

the resting state of the excitable cells. When sufficient current influx raise the membrane
potential up to a threshold of -55 mV, the voltage gated sodium channels (NaV ) massively
open to allow the flow of Na+ ions into the cell (depolarization). On reaching a potential
of 40 mV, the NaV channels inactivate and the voltage gated potassium channels (KV ) open,
causing the efflux of K+ ions out of the cell (repolarization). Due to their slow kinetics, the
KV channels remain opened longer than needed to reach the resting potential. This leads to
the hyperpolarization of the membrane, that is later reversed thanks to the ATP dependent
sodium-potassium pump.[23] Note that the NaV channels can be in three different states:
open, inactive and closed. Both inactive and closed states block the entrance of ions. How-
ever, while closed channels have the ability to open and allow the flux of Na+, the inactive
ones do not. At the resting membrane potential the channels are closed. Then, they open
during depolarization and they inactivate when repolarization starts. The channels do not
close until the end of the action potential. In this way, the cell membrane cannot depolarize
again and it can go back to its resting state. This is known as the refractory period.[23]

Fig. 1.7 Voltage profile of the action potential in neurons. The smaller bump represents a
failed action potential due to insufficient current to reach the threshold. Action potentials in
other excitable cells have different voltage profiles although they all start by depolarization.
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Blocking NaV channels would hinder the action potential in cell membranes and, thus, stop
its propagation through nerves or muscle fibres. For this reason, this work focuses on the
study of NaV channels as controlling their pore opening allows a precise control of signal
propagation. Eukaryotic NaV channels share a common structure composed of a large pore-
forming α subunit and smaller β subunits with auxiliary functions. The pore-forming subunit
(Figure 1.8) consists of four homologous domains (DI-DIV) that contain 6 transmembrane
segments each (S1-S6). Segments S1-S4 in all domains form the voltage sensors (VSs),
whereas S5-S6 form the pore module (PM). The PM also contains a pore loop between S5
and S6 (P loop).[24]

Fig. 1.8 a) Side view of the four domains of the NaV 1.5 channel. b) Top view of the four
domains of the NaV 1.5 channel. c) 2D structure representation of any NaV channel. Domains
DI, DII, DIII and DIV are green, blue, pink and yellow respectively.

Variation in the membrane potential induces a conformational change in the S4 segments
of the VSs, leading to the pore opening/closing. S4 contains positively charged aminoacids
that interact with negative residues in the neighbouring S1-S3. Upon depolarization, this
electrostatic force is relieved and, thus, S4 slides towards the extracellular medium and opens
the pore of the ion channel.[25]
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One of the most important regions in the NaV channels is the selectivity filter (SF). It
is located in the P-loop and right before the central cavity of the pore (Figure 1.8). As shown
in Figures 1.9 and 1.8C, it is composed by the aminoacids Asp, Glu, Lys and Ala (DEKA)
in eukaryotic cells and it is responsible for the selectivity of the ion channel, although the
reasons are still unknown.[25]

Fig. 1.9 DEKA aminoacids forming the selectivity filter in the NaV 1.5 voltage-gated ion
channel. Domains DI, DII, DIII and DIV are green, blue, pink and yellow respectively.

This study will focus on the NaV 1.5 channel, whose open crystal structure was determined in
2021 by means of cryo-electron microscopy.[24] The NaV 1.5 channel triggers the cardiac
action potential and initiates the heartbeat. Certain mutations in these channels have been
associated to arrhythmic disorders and, in this sense, some antiarrhythmic drugs have been
designed to block the NaV 1.5 channel.[24]

1.4 Azobenzenes in Ion Channels

The treatment of channelopathies (disorders in ion channels) usually involves drugs that
hinder ion conduction through their pore. After forming non-covalent bonds with the ion
channel, the drug can block the flow of ions by direct or indirect inhibition. In the former,
the drug directly interferes with the protein selectivity filter, whereas in the latter the inactive
state of the channel is stabilised.[26]



1.5 Objectives 10

In the same way as conventional drugs, azobenzenes can follow both direct and indirect
blocking strategies. The challenge lays on developing azobenzene derivatives whose pho-
tophysics assures a precise spatio-temporal control of ion channels. As mentioned earlier,
they also need to be non-toxic and fulfill the requirements of light-activated drugs. Moreover,
their structure should be capable of penetrating cell membranes, they must not degrade in the
cytoplasm, and they should selectively interact with the desired ion-channels.[27, 28]

DAD is a promising photoswitch to target ion channels as it has already been used to
restore retinal light responses and light-driven behavior to blind mice.[21] According to this
experimental study, the dark trans-DAD (protonated or deprotonated) blocks the KV channel
and then, upon 460 nm irradiation, it photoisomerizes to cis-DAD and unblocks the channel.
Furthermore, the existence of deprotonated DAD (neutral species), allows the rapid diffusion
across the membrane and its entrance to the ion channel.

1.5 Objectives

The present work includes the first steps of a more ambitious project, whose main final goal
is simulating the phoisomerization of DAD inside the NaV 1.5 channel to understand the ion
conduction blocking mechanism of this photoswitch. More specifically, the aims of this
project are:

• Finding potential binding pockets of trans-DAD in the NaV 1.5 channel and under-
standing the nature of its interactions with the most relevant residues in the binding
modes.

• Calculating the absorption spectrum of trans-DAD in vacuum, in water and in the
most stable pockets of the NaV 1.5 channel to characterise the excited states involved
in the photophysics of DAD, and to investigate the effect of the environment on the
excitations.

• Computing the trans-cis photoisomerization of DAD in vacuum and in water to deepen
into the photochemical aspects of these mechanisms and to assess the effect of the
solvent on the deactivation process.



Theoretical Methods

In this section, the theoretical methods that have been used during this work will be intro-
duced. They are divided in electronic structure methods, molecular mechanics and hybrid
Quantum/Classical Methods. The first ones are based in the resolution of the Schrödinger
equation. They have been used to model the photophysics of DAD in vacuum and in solution,
in combination with hybrid methods. Conversely, Molecular Mechanics uses empirical
equations (Force Fields) to approximate the energy of the system. They are often combined
with the classical equations of motion to investigate the time evolution of the system. This
approach has been used to find the binding pockets of DAD in the NaV 1.5 channel.

2.1 Electronic structure methods

2.1.1 The Schrödinger equation

The time-dependent Schrödinger equation [29] is of central importance in Quantum Chem-
istry as it describes the temporal evolution of the wave functions of particles. For this reason,
most methods in Quantum Chemistry aim at finding approximate solutions to the Schrödinger
equation, which is given as:

∂Ψ(r, t)
∂ t

=− i
h̄

Ĥ(r, t)Ψ(r, t) (2.1)

Where Ψ(r, t) is the wave function, that contains all the information of the system, t is the
time, r are the coordinates of Ψ(r, t) and Ĥ is the Hamiltonian operator, which is expressed
as the sum of the kinetic (T̂ ) and potential (V̂ ) energy operators:

Ĥ(r, t) = T̂ (r)+V̂ (r, t) =− h̄2

2m
∇

2 +V̂ (r, t) (2.2)
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T̂ (r) depends on the second order derivative ∇2. When V̂ does not depend on time, the
Hamiltonian becomes time-independent. Then, based on the Born-Huang formulation, i.e.,
the separation of the fast and slow degrees of freedom, Ψ(r, t) can be expressed as the product
of its spatial and temporal parts. As a result, equation 2.1 reduces to:

Ĥ(r) |Ψ(r)⟩= E |Ψ(r)⟩ (2.3)

Where E is the energy of the |Ψ⟩ eigenfunction. Equation 2.3 is known as the Time-
Independent Schrödinger Equation (TISE) and its |Ψ⟩ solutions correspond to the stationary
states of the system. It is impossible to find analytical solutions of the TISE for systems
involving more than two particles and, hence, several approximations are needed to treat
most chemical problems. The Ĥ operator in molecules consists of five terms:

Ĥ =−
n

∑
i=1

1
2

∇
2
i −

N

∑
A=1

1
2MA

∇
2
A +

n

∑
i=1

n

∑
j>i

1
ri j

+
N

∑
A=1

N

∑
B>A

ZAZB

RAB
−

n

∑
i=1

N

∑
A=1

ZA

ri j
(2.4)

Where Z denotes the atomic number, and ri j, RAB and RiA are the electron-electron, nucleus-
nucleus and electron-nucleus distances, respectively. The first two terms are the kinetic
energy operators of the n electrons (T̂e) and the N nuclei (T̂N) respectively. Similarly, the
last three terms correspond to the potential between electrons (Vee), the potential between
nuclei (VNN), and the potential between electrons and nuclei (VeN). Note that equation 2.4
is expressed in atomic units and, thus, h̄, the charge and the mass of the electron are equal to 1.

Considering that nuclei move several orders of magnitude slower than electrons due to
its heavier mass, the Born-Oppenheimer approximation[30] states that the total wave func-
tion can be split in its nuclear and electronic contributions:

|Ψ(r,R)⟩= |ψe(r,R)⟩ |ψN(R)⟩ (2.5)

Where |ψe(r,R)⟩ and |ψN(R)⟩ are the electronic and nuclear wave functions respectively.
Note that |ψe(r,R)⟩ has a parametrical dependance on the nuclear coordinates R. In this way,
the electronic Schrödinger equation (Equation 2.6) is solved for fixed nuclear geometries,
whereas Equation 2.3 includes all nuclear configurations.

Ĥe |Ψe⟩= Ee |Ψe⟩ (2.6)

The electronic Hamiltonian Ĥe only consists of T̂e, V̂ee and V̂eN . As the nuclear geometry
is fixed, T̂N = 0 and V̂NN is constant. Then, the total energy of the system is obtained as
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the sum of the electronic energy (Ee) and the Coulomb potential between the nuclei (VNN).[31]

However, due to the V̂ee term, the electronic Schrödinger equation (Equation 2.6) is still
impossible to solve for systems containing more than one electron. In this sense, the follow-
ing sections focus on further approximations that theoretical chemists use to deal with this
problem.

2.1.2 Hartree Fock

The Hartree Fock approximation (HF) [31] is the basis of most ab initio methods in quantum
chemistry. It expresses the many-electron wave function of the system as a Slater determinant
(equation 2.7) of one-electron wave functions, which are the spin orbitals |χi(xi)⟩.

|Ψ(x1,x2, · · · ,xn)⟩=

∣∣∣∣∣∣∣∣∣∣
|χ1(x1)⟩ |χ2(x1)⟩ · · · |χn(x1)⟩
|χ1(x2)⟩ |χ2(x2)⟩ · · · |χn(x2)⟩

...
... . . . ...

|χ1(xn)⟩ |χ2(xn)⟩ · · · |χn(xn)⟩

∣∣∣∣∣∣∣∣∣∣
(2.7)

Where xi are the spatial and spin coordinates of electron i. The spin orbitals |χi(xi)⟩ have the
following form:

|χi(xi)⟩= |ψi(ri)⟩ |σi⟩ (2.8)

ψi(ri) is the spatial orbital, that depends on the spatial coordinates ri, and |σi⟩ corresponds to
the spin, which can be either α or β .

HF is a variational method, i.e., the energy of a trial wave function (Ψt) is always higher
than the exact ground state energy unless Ψt is equal to the exact wave function. Therefore,
the solutions can be obtained iteratively by varying the parameters of an initial trial wave
function until the lowest possible energy is reached. HF minimizes the energy of its wave
function (the Slater determinant) by optimizing the spin orbitals |χ(xi)⟩ according to the
following equation:

f̂ (xi) |χ(xi)⟩= εv |χ(xi)⟩ (2.9)

Where εv are the orbital energies and f̂ (xi) is the Fock operator:

f̂ (xi) =−1
2

∇
2
i −

N

∑
A=1

ZA

riA
+ vHF(xi) (2.10)
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vHF(xi) acts as an average potential on electron i due to the rest of the electrons in the system
and it is expressed as:

vHF(xi) =
n

∑
b=1

(
Ĵb(xi)− K̂b(xi)

)
(2.11)

Where Ĵb(xi) and K̂b(xi) are the coulomb and exchange operators respectively. Both Ĵb(xi)

and K̂b(xi) depend on the spin orbitals and, thus, the Fock operator depends on its own
eigenfunctions. As a result, equations 2.9 can only be solved iteratively.

The restricted Hartree Fock (RHF) formulation assumes that each spatial orbital |ψi⟩ can be
occupied by two electrons that differ on their spin. Taking them as a linear combination of
atomic orbitals (LCAO) results in:

|ψi(ri)⟩=
k

∑
µ=1

cµi
∣∣φµ(ri)

〉
(2.12)

∣∣φµ

〉
is a set of predefined basis functions centered on k atoms (more on this later) and cµi are

their corresponding coefficients. Substituting equation 2.12 on equation 2.9 and multiplying
both sides by ⟨φν(ri)|:

k

∑
µ=1

cµi ⟨φν(ri)| f̂ (ri)
∣∣φµ(ri)

〉
= εv

k

∑
µ=1

cµi
〈
φν(ri)

∣∣φµ(ri)
〉

(2.13)

These are known as the Roothaan-Hall equations, that can be written in matrix form as:

FC = SCE (2.14)

Where F is the Fock matrix, S is the overlap matrix, C is the matrix containing the coefficients
of the spatial orbitals, and E contains the orbital energies. The Self-Consistent-Field (SCF)
procedure solves the Roothaan-Hall equations and obtains the coefficients in C and the orbital
energies iteratively. The final HF wave function consists of the n/2 lowest lying spatial
orbitals, and the total HF energy is then calculated from these results.

On the other hand, the unrestricted Hartree Fock (UHF) formulation allows the opposite-spin
spin orbitals to differ on their spatial parts. In this case, the Pople-Nesbet equations need to
be solved:

FαCα = SCαEα (2.15)

FβCβ = SCβ Eβ (2.16)
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HF fails to give the exact energy and it is not suitable to study many chemical problems.
The difference between the exact non-relativistic energy and the lowest HF energy is the
correlation energy, which accounts for the electron-electron interaction that the HF average
potential does not consider. Many methods aim at recovering this correlation energy. In
particular, we can distinguish between dynamic and static correlation. The former is related
with the instant correlation of electrons, while the latter is associated with a more permanent
avoidance between electrons.

2.1.3 Multi-Configurational Self-Consistent-Field

Certain chemical problems, such as electronic excited states calculations, require multiple
Slater determinants to get an accurate description of the system. In these cases, some
configurations are nearly degenerate and, hence, they contribute equally to the wave function.
Multi-Configurational Self-Consistent-Field (MCSCF) methods [31] deal with this kind of
systems. Their wave function consists of a linear combination of configurations (equation
2.17), and, in this way, they recover the static correlation.

|ΨMC⟩=
NCSF

∑
m=1

cm |Ψm⟩ (2.17)

Where cm are the expansion coefficients and |Ψm⟩ are Configuration State Functions (CSF),
i.e., Slater determinants built from orthonormal orbitals where opposite spin electrons share
the same spatial part:

|Ψm⟩= |ψiψ̄i, · · · ,ψNe ¯ψNe⟩m (2.18)

ψi are the spatial orbitals ψi = ∑
NAO
µ=1 cµi

∣∣φµ

〉
, where cµi are the expansion coefficients of the

atomic orbitals
∣∣φµ

〉
. In MCSCF methods, both cm and cµi are optimized simultaneously via

an iterative process.

Complete Active Space Self-Consistent-Field

The computational cost of MCSCF methods depends on the number of configurations that
are considered in Equation 2.17. One of the most common strategies to reduce the number of
CSFs, and hence, the computational cost, is the Complete Active Space Self-Consistent-Field
(CASSCF) method.[32, 33]

As shown in Figure 2.1, the orbitals in the CASSCF wave function are divided in three
different regions: inactive, active and virtual. The inactive and virtual orbitals are always
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doubly occupied and empty, respectively. On the other hand, the occupation of the active
orbitals varies between 0 and 2. These orbitals constitute the most important region: the
Active Space (AS). The CASSCF wave function includes all the possible combinations of
excitations (single, double, triple, etc) involving the orbitals in the AS. In this context, single
(doubly, triply, etc) excited configurations are built from single (double, triple, etc) excitations
in which one (two, three, etc) electron(s) move from an occupied orbital to an unoccupied
orbital with respect to the HF wave function. Then, the excited configurations resulting from
all the possible combinations are included in Equation 2.17, performing what is known as a
full Configuration Interaction (CI) calculation in this region. However, as the cµi expansion
coefficients of the orbitals are optimized in all subsets, the orbitals can exchange between the
AS and the inactive/virtual regions in some cases. To further reduce the computational cost,
some frozen orbitals, which are usually core orbitals, can be specified. In this region, the cµi

orbital coefficients are taken from HF.

Fig. 2.1 Representation of the inactive, active and virtual regions in CASSCF calculations.
The dotted region represents the frozen orbitals, which are usually core orbitals.

A major drawback of CASSCF is that it is not a "black box" method. The user needs to
specify the orbitals in the AS and the results are highly dependent on this choice. There is
no systematic procedure to select the most appropriate AS, however, there are some general
rules:

• Orbitals with occupation numbers very close to 2 or 0 should belong to the inactive
and virtual regions, respectively. On the other hand, orbitals with occupation numbers
significantly different from 0 or 2 should be considered in the AS.
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• The HF highest energy occupied and lowest energy unoccupied orbitals should also
belong to the AS.

• The AS must contain the most important orbitals to describe the chemical problem
(chemical intuition). For example, in electronic excited states calculations, π and
π∗ orbitals are usually relevant. Note that, if a particular π orbital is in the AS, the
corresponding π∗ antibondig should also be included. The same applies to σ and σ∗

orbitals, which are often involved in bond breaking.

The CASSCF wave function for excited states is expressed as:

∣∣∣ΨMC
root

〉
=

NCSF

∑
m=1

cm,root |Ψm⟩ (2.19)

Where the cm,root coefficients differ for each electronic state (root). Then, the electronic states
can be obtained from independent CASSCF calculations, in which, in each one of them, a
single electronic state is optimized. However, the individual optimization of the electronic
states may result in a change in their order (root flipping), leading to convergence problems.
The State Average CASSCF (SA-CASSCF) method can avoid this complication. In this
formalism, the root average energy is optimized, and the wave function consists of a linear
combination of the electronic states wave functions:∣∣∣ΨMC

SA

〉
=

Nroots

∑
root=1

ωroot

∣∣∣ΨMC
root

〉
(2.20)

Where ωroot is the weight of each electronic state. Specific cm coefficients are obtained for
each of the states. On the contrary, all states in SA-CASSCF share a common set of orbitals
and, thus, the cµi are not optimized for the individual states. As a result, their description is
poorer when the number of states in the SA-CASSCF calculation is higher.

Complete Active Space Second Order Perturbation Theory

MCSCF methods fail to include the dynamic correlation, which appears in configurations
having a small contribution to the wave function. In this sense, the Complete Active Space
Second Order Perturbation Theory (CASPT2) [34, 35] aims at recovering the missing
dynamic correlation by means of second order perturbation theory.[36] The Hamiltonian in
perturbation theory consists of an unperturbed Hamiltonian Ĥ(0) and a perturbed Hamiltonian
Ĥ ′ of small magnitude:

Ĥ = Ĥ(0)+λ Ĥ ′ (2.21)
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λ (0 ≤ λ ≤ 1) is an artifact that quantifies the extent of the perturbation. Exact solutions∣∣∣Ψ(0)
i

〉
exist for the unperturbed, or zeroth order Hamiltonian:

Ĥ(0)
∣∣∣Ψ(0)

i

〉
= E(0)

i

∣∣∣Ψ(0)
i

〉
(2.22)

Where E(0)
i is the zeroth order energy. To find the perturbed solutions, the wave function and

the energy are expanded as a Taylor series:

Ei(λ ) = E(0)
i +λE(1)

i +λ
2E(2)

i +λ
3E(3)

i + · · · (2.23)

|Ψi(λ )⟩=
∣∣∣Ψ(0)

i

〉
+λ

∣∣∣Ψ(1)
i

〉
+λ

2
∣∣∣Ψ(2)

i

〉
+λ

3
∣∣∣Ψ(3)

i

〉
+ · · · (2.24)

Substituting into the time-independent Schrödinger equation and reordering according to the
powers of λ :[37]

λ
0 : Ĥ(0)

∣∣∣Ψ(0)
i

〉
= E(0)

i

∣∣∣Ψ(0)
i

〉
(2.25)

λ
1 : Ĥ(0)

∣∣∣Ψ(1)
i

〉
+ Ĥ ′

∣∣∣Ψ(0)
i

〉
= E(0)

i

∣∣∣Ψ(1)
i

〉
+E(1)

i

∣∣∣Ψ(0)
i

〉
(2.26)

λ
2 : Ĥ(0)

∣∣∣Ψ(2)
i

〉
+ Ĥ ′

∣∣∣Ψ(1)
i

〉
= E(0)

i

∣∣∣Ψ(2)
i

〉
+E(1)

i

∣∣∣Ψ(1)
i

〉
+E(2)

i

∣∣∣Ψ(0)
i

〉
(2.27)

λ
k : Ĥ(0)

∣∣∣Ψ(k)
i

〉
+ Ĥ ′

∣∣∣Ψ(k−1)
i

〉
=

k

∑
j=0

E( j)
i

∣∣∣Ψ(k− j)
i

〉
(2.28)

Then, the kth order energy correction can be obtained as:

E(k)
i =

〈
Ψ

(0)
i

∣∣∣ Ĥ ′
∣∣∣Ψ(k−1)

i

〉
(2.29)

Taking into account the intermediate normalization condition
〈

Ψi

∣∣∣Ψ(0)
i

〉
= 1, the second

order correction energy is:

E(2)
i = ∑

k ̸=i

〈
Ψ

(0)
i

∣∣∣ Ĥ ′
∣∣∣Ψ(0)

k

〉〈
Ψ

(0)
k

∣∣∣ Ĥ ′
∣∣∣Ψ(0)

i

〉
E(0)

i −E(0)
k

(2.30)

CASPT2 uses the CASSCF wave function as the unperturbed
∣∣∣Ψ(0)

i

〉
, and the CASSCF Fock

operator as the zeroth order Hamiltonian Ĥ(0). Equation 2.30 in CASPT2 excited states
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calculations translates as:

E(2)
root = ∑

k

〈
Ψ

(0)
root

∣∣∣ Ĥ ′
∣∣∣Ψ(0)

k

〉〈
Ψ

(0)
k

∣∣∣ Ĥ ′
∣∣∣Ψ(0)

root

〉
E(0)

root −E(0)
k

(2.31)

Where k are all the considered single and double excitations and E(2)
root is the State Specific

CASPT2 (SS-CASPT2) energy. The SS-CASPT2 wave function is the first order wave
function: ∣∣∣Ψ(SS−CASPT 2)

root

〉
= c0

∣∣∣Ψ(0)
root

〉
+ c1

∣∣∣Ψ(1)
root

〉
(2.32)

Where c0 and c1 are the weights of the reference wave function and the first order correction,
respectively. The reference weight (c0) is used to asses the CASPT2 calculation as it
should be large enough to consider perturbation theory a good approximation. Moreover, it
should also have a similar magnitude for all the electronic states because the perturbation
is supposed to be comparable in all roots. When the reference weights significantly differ
from one another, there may be "intruder states"[38] in the AS of the CASPT2 calculation.
The corresponding E(0)

k energy of the intruder states is very close to E(0)
root and, hence, the

denominator in Equation 2.31 tends to 0. When there is only one intruder state, the best
approach to solve this issue is increasing the active space to include the orbitals that this
state involves. Otherwise, a small constant, known as the level shift [38], can be added to the
zeroth order Hamiltonian. In this way, the CASPT2 correction energy:

E(2)
root = ∑

k

〈
Ψ

(0)
root

∣∣∣ Ĥ ′
∣∣∣Ψ(0)

k

〉〈
Ψ

(0)
k

∣∣∣ Ĥ ′
∣∣∣Ψ(0)

root

〉
E(0)

root −E(0)
k + ε

(2.33)

Where ε can be both a real or an imaginary shift. Similarly, it was shown that introducing an
empirical parameter, the IPEA shift, in the denominator improves the dissociation energies
of diatiomic molecules and the electronic excitations in some polyatomic molecules.[39]

In the same way as CASSCF, SS-CASPT2 only calculates the second order correction
of a single root, without considering its interactions with the other electronic states. On the
other hand, Multi-State CASPT2 (MS-CASPT2)[40] takes all the excited states of interest
into account. To do this, it uses an effective Hamiltonian whose diagonal elements are the
SS-CASPT2 energies, and the r,s non-diagonal elements correspond to the

〈
Ψ

(0)
r

∣∣∣ Ĥ
∣∣∣Ψ(1)

s

〉
coupling between states r and s. Its diagonalization leads to the MS-CASPT2 energies and
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the Perturbated Modified CASSCF (PMCASSCF) wave function:

∣∣∣Ψ(PMCASSCF)
root

〉
=

Nroots

∑
i=1

c(0)i

∣∣∣Ψ(0)
i

〉
(2.34)

2.1.4 Density Functional Theory

Similarly to MCSCF methods, Density Functional Theory (DFT)[41] also aims to include the
correlation energy that is missing in HF. However, instead of optimizing the wave function,
it focuses on the electron density. The electron density is the number of electrons per unit
volume and, thus, it is expressed as:

ρ(r) = n
∫

∞

0
|Ψ(r1, · · · ,rn)|2dr1 · · ·drn (2.35)

No matter the number of electrons in the system, the optimization of the electron density is a
one-particle problem that depends only on 3 spatial coordinates. Therefore, calculations are
much faster compared to wave function methods including correlation and, in practice, the
computational cost is similar to HF, which makes calculations affordable for bigger chemical
systems. Moreover, the electron density contains the same information as the wave function
since, most properties, such as the number of electrons, the nuclei position and the nuclear
charges, can be extracted from it.

Hohenberg-Kohn Theorems

Hohenberg and Kohn [42] proposed two theorems that are the foundations of DFT. The first
theorem, also known as the proof of existence, considers that the electron density creates
an external potential Vext in which the electrons move. By reductio ad absurdum, it is
possible to prove that there cannot be two different Vext that yield exactly the same ρ(r). This
means that Vext is an unique functional of ρ(r). In addition, as Vext fixes the Hamiltonian
(Ĥ = T̂ +V̂ee +V̂ext), the many particle ground state is also a unique functional of ρ(r).[41]
Therefore, all the properties of the system can be obtained from ρ(r). In particular, the
ground state energy as a function of the electron density is defined as:

E[ρ] = T [ρ]+Vne[ρ]+Vee[ρ]+Vnn[ρ] (2.36)

Where T [ρ], Vne[ρ], Vee[ρ] and Vnn[ρ] are the kinetic energy, nuclear-electron, electron-
electron and nuclear-nuclear potentials respectively. Within the Born-Oppenheimer approxi-
mation, Vnn[ρ] is a constant. In addition, Vne[ρ] can be expressed in terms of the potential
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created by the nuclei (νext):

Vne[ρ] =
∫

νext(r)ρ(r)dr (2.37)

T [ρ] and Vee[ρ] do not depend on νext so they are both included in the Hohenberg-Kohn
functional (FHK[ρ]) according to FHK[ρ] = T [ρ]+Vee[ρ]. In this way, the electronic ground
state energy as a function of the density reduces to:

Eν [ρ] =
∫

νext(r)ρ(r)dr+FHK[ρ] (2.38)

The second Hohenberg-Kohn theorem states that DFT is variational: a trial electron density
will always provide a higher energy than the exact ground-state. Hence, a more accurate
density can be obtained by minimizing Eν [ρ]:[

∂Eν [ρ]

∂ρ

]
= νext(r)+

∂FHK[ρ]

∂ρ
(2.39)

Solving Equation 2.39 would result in the exact ground state energy. However, as the exact
FHK is unknown, DFT is not variational in practice because of the use of approximate
functionals.

The Kohn-Sham Approach

In order to develop approximate functionals, Kohn and Sham defined a fictitious system of
non-interacting particles whose electron density is exactly the same as in the real system of
interacting particles.[37] The non-interacting Hamiltonian is given as:

ĤKS =−1
2

∇
2 +VKS(r) (2.40)

Where the first term is the electronic kinetic energy of the non-interacting particles, and
VKS(r) is the Kohn-Sham potential: the constant external potential that determines the density
of both fictitious and real systems. This leads to:

ĤKSχ
KS
i = εiχ

KS
i (2.41)

In the same way as in HF, equation 2.41 is solved self-consistently and the spatial part of the
χKS

i solutions are the Kohn-Sham orbitals. χKS
i are equivalent to the HF Slater determinants

and describe the orbitals of the non-interacting system. As a result, the computational
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problem depends on 3N variables. Then, the electron density can be obtained according to:

ρ(r) =
Nelec

∑
i=1

|χKS
i |2 (2.42)

The procedure explained above is only possible if the exact Hamiltonian in equation 2.40 is
known. Therefore, the form of VKS(r) needs to be determined. In this context, equation 2.36
translates as:

E[ρ] = TKS[ρ]+Vne[ρ]+ J[ρ]+Exc[ρ] (2.43)

TKS[ρ], Vne[ρ], and J[ρ] can be calculated exactly from the Kohn-Sham orbitals. According
to equation 2.40, the kinetic energy of the non-interacting system is:

TKS[ρ] =−1
2

Nelec

∑
i=1

〈
χ

KS
i

∣∣∣∇
2
∣∣∣χKS

i

〉
(2.44)

Regarding the nuclear-electron potential Vne[ρ], it is calculated as:

Vne[ρ] =−
Nnuc

∑
i=1

Zi

∫
ρ(r)

|r−Ri|
dr (2.45)

Then, J[ρ], which is part of the Vee[ρ] electron interaction, corresponds to the classical
Coulomb electron-electron interaction:

J[ρ] =
1
2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (2.46)

Finally Exc[ρ] includes the exchange-correlation non-classical effects, correction to self-
interaction (the interaction of one electron with itself), and the kinetic energy that is not
included in the non-interacting system:

Exc[ρ] = (T [ρ]−TKS[ρ])+(Vee[ρ]− J[ρ]) (2.47)

Therefore, the Hohenberg-Kohn functional (FHK[ρ]) here is:

FHK[ρ] = TKS[ρ]+ J[ρ]+Exc[ρ] (2.48)
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And, as the potential is the partial derivative of the potential energy with respect to the density,
the final form of VKS(r) is:

VKS(r) =
Nnuc

∑
i

Zi

|r−Ri|
+

∫
ρ(r2)

|r1 − r2|
dr2 +

∂Exc[ρ]

∂ρ(r)
(2.49)

Unfortunately, Exc[ρ] is unknown and approximations are needed to perform the calculations.
Similarly to HF, the SCF procedure starts with a trial set of orbitals that are updated iteratively
until convergence is reached. However, as the exact functional is unknown, the final energy
can be lower than the exact energy of the system, i.e., DFT is not variational in practice.[37]

The Exchange-Correlation Functional

As mentioned in the previous section, the exchange-correlation functional is still unknown
and, thus, many strategies have been developed to find an accurate approximation.[37] In
general, the exchange-correlation functional is divided into the exchange and the correlation:

Exc[ρ] = Ex[ρ]+Ec[ρ] (2.50)

The most simple approaches are the Local Density Approximations (LDA), which are based
on the uniform electron gas model. They consider the electron density locally and they
assume that it is finite and constant. As a result, they are not suitable to study systems
with non-uniform electron density such as molecules. In addition, they tend to overestimate
electron correlation and underestimate the exchange. VWN is an example belonging to this
rung and was proposed by Vosko, Wilk and Nusair.[43]

General Gradient Approximations (GGA) emerged as a way to improve the LDA per-
formance. In the same way as LDA, they consider the electron density locally but, in addition,
they also include the gradient of the electron density. In this way, they improve the description
of chemical systems compared to LDA. A famous functional that belongs to this rung is
BLYP, which combines the exchange proposed by Becke, and the correlation by Lee, Yang
and Parr.[44, 45] However, they are still far from accurate as, for instance, they tend to
underestimate reaction barriers. More precise results are usually obtained with meta-GGA
functionals since they also consider the second derivative of the electron density. Truhlar and
coworkers developed one of the most important meta-GGA functionals, which are known as
the Minnesota functionals.[46]

Unlike pure density functionals, like LDA and GGA, hybrid functionals consist of a linear
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combination of HF exchange and the previous explicit exchange-correlation functionals.
They usually provide accurate results and, hence, they are widely spread in the computational
chemistry community. Most probably, B3LYP[47] is the most famous hybrid functional.

All these functionals struggle with the description of non-covalent medium range inter-
actions, such as van der Waals energies. One way to correct this is including an additional
dispersion energy term (Edisp) in the functional, which is usually calculated empirically.

Etotal = EDFT +Edisp (2.51)

Alternatively, generalized random phase methods consider both occupied and non-ocuppied
Kohn-Sham orbitals and, hence, the description of the dispersion improves. The OEP2
functional [48] belongs to this rung. Another option is the use of range-separated functionals,
where the amount of HF exchange varies depending on the distance. They are important to
describe charge-transfer. Two examples are CAM-B3LYP[49] and ωB97X[50].

Unfortunately, there is no systematic way of improving the functionals and, therefore,
a proper benchmarking is always a must. Nevertheless, the functionals can be classified in
the so called Jacob’s ladder according to their expected accuracy. It ranges from the HF result
to the exact solution and it follows the order: LDA, GGA, Meta-GGA, Hybrid functionals
and Generalized random phase methods.[51]

Time-Dependent Density Functional Theory

Electronic excitations occur upon irradiation with a time-dependent potential. Therefore,
excited states are no longer stationary states and, hence, the time-dependent Schrödinger
equation (equation 2.1) needs to be solved. However, this is even more complicated than
calculating the ground-state so more approximations are needed.

In this context, Runge and Gross proved that, for a given initial state, there is a one-to-one cor-
respondence between the time-dependent external potential νext(r, t) and the time-dependent
density of the system ρ(r, t). This is equivalent to the first Hohenberg-Kohn theorem and it
means that νext(r, t) is a unique functional of the ρ(r, t) evolution in time.[52] Following the
same strategy as in conventional DFT, we can define a fictitious system of non-interacting
particles that fulfil the time-dependent Kohn-Sham equations:

i
∂ χKS

i (r, t)
δ t

=

[
− 1

2
∇

2 +νKS[ρ](r, t)
]

χ
KS
i (r, t) (2.52)
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In the same way as before, νKS[ρ](r, t) yields the temporal evolution of the density of both
the non-interacting and real systems. Once again, the density can be calculated from the
time-dependent Kohn-Sham orbitals χKS

i (r, t):

ρ(r, t) =
Nelec

∑
i=1

|χKS
i (r, t)|2 (2.53)

Likewise, the final form of νKS[ρ](r, t) resembles equation 2.49:

νKS[ρ](r, t) = νne(r, t)+νH(r, t)+νxc(r, t) (2.54)

Where νH(r, t) is the Hartree potential, which plays the same role as the classical Coulomb
potential in equation 2.49:

νH(r, t) =
∫

ρ(r2, t)
|r1 − r2|

dr2 (2.55)

All efforts in TDDFT focus on finding approximations to the exchange-correlation potential
νxc(r, t), which is still unknown. According to perturbation theory, when the time-dependent
potential is weak, we only need to consider the form of νxc(r, t) close to the initial state,
which is taken to be the ground-state. This is the case of most spectroscopic experiments
and, therefore, their time-dependent density can be written as:

ρ(r, t) = ρGS(r, t)+δρ(r, t) (2.56)

Hence, the exchange-correlation potential νxc(r, t):

νxc[ρGS +δρ](r, t) = νxc[ρGS](r)+
∫ ∫

fxc[ρGS](r,r′, t − t ′)δρ(r′, t ′)dr′dt ′ (2.57)

where fxc is the exchange-correlation kernel and depends exclusively on the ground-state
density according to:

fxc[ρGS](r,r′, t − t ′) =
δνxc(r, t)
δρ(r′, t ′)

∣∣∣∣
ρ=ρGS

(2.58)

This approach is known as linear response theory and it is much simpler than dealing with
the full exchange-correlation because, in this case, νxc(r, t) is a functional of just the ground
state density.[52]

Another important concept in linear response is the point-wise susceptibility S[ρGS].[52]
It is defined as the impact that a small change in the external potential has on the ground
state density. The non-interacting system also has its own SKS, which differs from S[ρGS],
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but, according to Kohn-Sham, both must lead to the same density response. Moreover, it is
possible to relate the single-particle excitations of the non-interacting system with the SKS:

SKS(r,r′,ω) = 2 limη→0+ ∑
q

[
ξq(r)ξ ∗

q (r
′)

ω −ωq + iη
−

ξ ∗
q (r)ξq(r′)

ω +ωq − iη

]
(2.59)

Where ξq(r) = χ∗
i (r)χa(r) and ωq is the energy that represents the electronic transition from

an occupied i to an unocuppied a Kohn-Sham orbital (ωq = εa−εi). Hence, when ω matches
ωq, the susceptibility function presents a peak that corresponds to an electronic excitation.
However, the transitions in the real system differ from the ones in equation 2.59 unless the
Hartree exchange-correlation effects are absent. In this sense, for frequency independent
kernels, Casida showed that it is possible to calculate the transitions as an eigenvalue problem,
where the eigenfunctions are the oscillator strengths, and the eigenvalues are the excitation
energies. Most computational chemistry codes use this approach.[52]

2.1.5 Basis sets

The molecular orbitals in wave function methods and in DFT are expressed as a linear
combination of basis functions:

|ψi(ri)⟩=
Mbasis

∑
µ=1

cµi
∣∣φµ(ri)

〉
(2.60)

where cµi are the coefficients that are optimized in the SCF procedure and
∣∣φµ(ri)

〉
are the

basis functions. In the complete basis set limit, it is possible to recreate any given function.
However, this limit is unreachable as it requires infinite functions. Therefore, in practice,
basis sets can only yield approximate molecular orbitals that will be more or less accurate
depending on the chosen basis functions.[37]

We can distinguish between Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO):

φ
STO
ζ ,n,l,m(r,θ ,ϕ) = NYl,mrn−1e−ζ r (2.61)

φ
GTO
ζ ,n,l,m(r,θ ,ϕ) = NYl,mr2n−2−le−ζ r2

(2.62)

Where ζ is the nuclear effective charge; n, l and m are the quantum numbers; r, θ and ϕ

are the polar coordinates; N is the normalization constant and Yl,m is the spherical harmonic
function. STO orbitals reproduce hydrogenlike orbitals and, hence, they are very accurate.
However, the calculation of the required integrals, which can only be solved numerically, is
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very computationally demanding. On the other hand, calculations with GTOs are much more
efficient, making them the usual preferred choice.[37] In order to improve the accuracy of
this kind of basis, a linear combination of gaussians is used to recreate STOs:

φ
CGTO =

k

∑
i

aiφ
GTO
i (2.63)

Where φ GTO
i are the primitive functions (PGTO) and ai are the corresponding coefficients,

which remain fixed during the calculations. φCGTO are known as the contracted GTOs and
they allow a proper description of the molecular orbitals and the efficient calculation of the
integrals. The larger the expansion in equation 2.63, the better the description of the STO.

The smallest basis that can be used, also known as the minimal basis set, contains only
one basis function/orbital per electron. In order to improve their flexibility, and hence, their
description, the number of orbitals can be multiplied by an integer number X. This leads to
the XZ basis sets, including the Double Zeta (DZ) and the Triple Zeta (TZ), among others.
Taking into account that core orbitals are not usually involved in chemical bonding, it is often
convenient to include additional functions to valence orbitals. This results in the split valence
basis VXZ.[53]

In some cases, VXZ basis sets are still not enough. When weak interactions, such as
van der Waals or hydrogen bonds, are relevant, diffuse functions should be included. The
latter consist of a small exponential term that allows the proper representation of charges that
are far from the nuclei. Similarly, polarization is needed when functions with larger angu-
lar momentum are required. This usually happens in bond forming/breaking contexts.[53, 54]

In this master thesis, the Correlation Consistent-polarized Valence Double Zeta (cc-pVDZ)[55]
basis set has been used. In Correlation Consistent basis sets, the exponents and the coefficients
of the primitive functions were optimized including electron correlation in the calculations.
Therefore, they tend to provide very accurate results.

2.1.6 Wave Function Analysis

The assignment of wave function character is crucial in the analysis of excited states calcula-
tions. However, it can be challenging in certain situations that require the processing of huge
datasets or the interpretation of effects that arise in larger systems. Hence, in these cases, it is
convenient to make use of methods that automatise the wave function analysis.
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Fragment-based excited state analysis as implemented in TheoDORE [56] has been per-
formed in this work. In this method, the system is divided into different units and the positions
of the hole and the excited electron involved in the transition are analyzed to classify the
states. For example, in Figure 2.2a), the excitation is local as both the hole and the electron
belong to fragment 1. Alternatively, there is charge transfer in Figure 2.2b) since there is an
electron transition between two different fragments. Moreover, multiple local excitations are
also possible. This is the case of Figure 2.2c), where a dominant contribution in fragment 2
is coupled with two additional excitations in 1 and 3. Finally, Figure 2.2d) shows a linear
combination of two opposite direction charge transfer states. Apart from the location of the
electron-hole pair, the dynamic connection that the arrows represent is also relevant. This is
what distinguishes Figures 2.2 c) and d).

Fig. 2.2 Top pannel: representation of different types of excited states depending on the
localisation of the hole and the electron, and their dynamic connection. Bottom pannel:
electron-hole correlation plots for three fragment systems

In this context, the one-electron transition density matrix (1TDM) between the ground and
excited states is considered to describe the electron-hole pair:

γ0I(rh,re) = n
∫

· · ·
∫

Ψ0(rh,r2, · · · ,rn)ΨI(re,r2, · · · ,rn)dr2 · · ·drn (2.64)

where Ψ0 and ΨI are the ground state and excited wave functions respectively. rh and re are
the coordinates of the hole and the electron in Ψ0 and ΨI . From this, the charge transfer
numbers (ΩAB) can be computed:

ΩAB =
∫

A

∫
B
|γ0I(rh,re)|2dredrh (2.65)
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where the hole and the electron are located in fragments A and B respectively. All ΩAB values
can be collected into a nF x nF Ω matrix where nF is the number of fragments. Figure 2.2
shows a visual representation of the corresponding Ω matrices from the previous examples. A
darker colour indicates a larger ΩAB. In this sense, for Figure 2.2 a) Ω11 = 1 and the rest are 0.
Therefore, only the bottom-left corner is coloured. Similarly, for Figure 2.2 b), just Ω21 = 1
is coloured as the excitation goes from 2 to 1. Furthermore, the local excitations in Figure 2.2
c) render a less intense non-vanishing diagonal. On the other hand, the charge-transfer states
from Figure 2.2 d) are represented in the non diagonal terms. Finally, the initial and final
positions, corresponding to the hole and the electron respectively, can be obtained from ΩAB.
In this way, the mean position of the excitation (POS) can be derived, which is sometimes
useful to characterize the nπ∗ or ππ∗ nature of the involved transitions.

2.2 Molecular Mechanics

2.2.1 Molecular Dynamics

Large systems, like most biomolecules, present a huge number of stable conformations in
their PES due to their great amount of degrees of freedom. Therefore, a proper sampling of
the configuration space is necessary in order to get an accurate description of the system.
Unfortunately, a full electronic structure calculation is not feasible and, hence, classical
approximations are more appropriate as they allow the generation of configurations at a
lower computational cost. According to the ergodic theorem[57], the average of all the
configurations is equal to the average geometry of a single individual over time. In this
sense, one of the most popular approaches to sample the configuration space is Molecular
Dynamics (MD), which is based on the time propagation of the Hamilton’s equations of
motion (Equations 2.68 and 2.69).[58]

Equations of Motion

The Hamilton’s equations of motion can be derived from the Newton’s second law and from
the kinetic energy expression. Starting from the Newton’s second law:

Fi =
d pi

dt
(2.66)

where Fi is the force and pi the momentum of atom i, and knowing that:

Fi =−dV
dri

(2.67)
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where V is the potential energy of a conservative system. Then, equating 2.66 and 2.67:

d pi

dt
=−dV

dri
(2.68)

which is the first Hamilton equation. Regarding the second, it is obtained by deriving the
kinetic energy (Ti) with respect to the momentum:

dTi

d pi
=

d
d pi

(
p2

i
2mi

)
=

2pi

2mi
=

mivi

mi
= vi =

dri

dt
(2.69)

where mi is the mass of the particle and vi its velocity.[58] Hence, both Hamilton equations
predict the evolution of the coordinates and the momentum of each atom with time.

Integrators

The equations of motion need to be integrated numerically in order to obtain the temporal
evolution of the system. Starting from an initial geometry, the equations are solved according
to a specified time-step. Ideally, the chosen integration method should render an accurate
approximation of the real trajectory of the system. Moreover, the energy of the system needs
to be conserved, and the use of the largest possible time step is convenient to sample the
configuration space faster.

One of the most popular integrators is the velocity Verlet algorithm[59], which obtains
the corresponding coordinates (Equation 2.70) and velocities (Equation 2.71) for each time
step.

ri(t +∆t) = ri(t)+ vi(t)∆t +
1
2

ai(t)∆t2 (2.70)

vi(t +∆t) = vi(t)+
1
2
(ai(t)+ai(t +∆t))∆t (2.71)

In the first step, the forces at time t are calculated from the potential energy to get the
acceleration according to Newton’s second law:

ai =
Fi

mi
=− 1

mi

∂V
∂ ri

(2.72)

Then, the positions at t +∆t are computed from the velocity, position and acceleration at
time t according to Equation 2.70. Next, the accelerations at t +∆t are again obtained from
equation 2.72 as they are required for equation 2.71. Finally, the new velocities at time t +∆t
are calculated from equation 2.71.
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This kind of integration schemes are known as expansion based methods since they make use
of Taylor series to propagate the coordinates and the velocities. The leap-frog integrator [60]
also belongs to this kind. In this case, the positions and the velocities are asynchronous: the
position is calculated for t +∆t, while the velocities are at t + ∆t

2 .

No matter the integrator, the time-step needs to be no longer than half the period of the fastest
vibration. This is 1 fs in systems that involve bonds with H. There are several approaches
that aim to increase the time step to make the sampling faster. In this sense, the SHAKE [61]
and the RATTLE [62] algorithms freeze the X-H bonds to remove the fast vibration, making
2 fs time steps feasible. Furthermore, multiple time step integration methods can be used.
The latter are based on the system decomposition in different time scales according to their
corresponding vibration speed.[63]

Note that all integrators require an initial set of positions and velocities to start the propa-
gation. However, most programs can compute an estimation of the initial velocities from a
Maxwell-Boltzmann distribution and, hence, thermal equilibrium is assumed.

Force Fields

The integration of the equations of motion requires the evaluation of the potential energy
gradient (Equation 2.72). In this sense, electronic structure calculations provide the most
accurate estimation of the potential due to its strong physical basis. However, these computa-
tions are extremely expensive and are only feasible for small systems and short simulation
times. On the other hand, Molecular Mechanics (MM) methods are faster and allow the
calculation of bigger systems. But, as the physical basis of MM is much poorer, it requires a
significant amount of initial parametrization. In the description of the system in MM, the
electrons are treated together with the nuclei as “effective classical atoms” or Atom Types.
Atom Types provide information about the bonding environment of the atoms and each one
of them are described by a set of parameters. For instance, in this way, it is possible to
distinguish sp3 carbons from aromatic sp2 carbons or carboxylic sp2 carbons.[37]

As explained earlier, the forces to integrate the equations of motion are derived from the
potential energy which, in MM, is calculated using Force Fields. A Force Field is an equation
that relates the potential energy of the system with its internal coordinates.[37] They are
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normally split in bonded and non-bonded terms as follows:

Vtotal = ∑
bonds

VRB + ∑
angles

Vθ + ∑
torsions

Vτ + ∑
atoms

VvdW+rep + ∑
atoms

Velstat (2.73)

where the bond (VRB), angle (Vθ ) and the torsion (Vτ ) potentials are the bonded terms, while
the vdW+repulsion (VvdW+rep) and the electrostatic (Velstat) potentials are the non-bonded
terms. Conventional Force Fields are not expected to describe bond formation or rupture and,
thus, bond distances (one bond separation between the interacting atoms) and angles (two
bond separation) should be close to equilibrium. As a result, both VRB and Vθ interactions
can be described by harmonic potentials since they provide fast and good approximations:

VRB =
1
2

kb(RB −RB0)
2 (2.74)

Vθ =
1
2

ka(θ −θ0)
2 (2.75)

Here, RB0 and θ0 are the parameters that represent the equilibrium bond lengths and angles,
respectively. Similarly, kb and ka are the force constant parameters, which can be derived
experimentally or by means of quantum chemical calculations. Note that, if a higher accuracy
is required, more terms can be included in the Taylor expansions of equations 2.74 and
2.75. Regarding the torsional angle interactions Vτ (three bond separation), a Fourier-series
expansion is more appropriate for its description as the potential is periodic with respect to
the dihedral angle. This can be expressed as a linear combination of cosine functions:

Vτ = ∑
i

1
2

kτ,i(1+ cos(nτ,iφτ −δτi)) (2.76)

where the parameter φτ is the torsional angle, δτi is the phase, nτ,i describes the shape of the
potential, and kτ,i is the torsional energy barrier. In this context, the linear combination of
torsional terms with different nτ,i leads to potentials with minima of different depths. This is
necessary to describe most systems.

The description of the non-bonded (four or more bond separation) vdW+repulsion interac-
tions (VvdW+rep) often employs model potentials such as Lennard-Jones (Equation 2.77),
Morse or Hill-Buckingham. Finally, to account for electrostatics, Force Fields generally use
Coulomb’s Law and assign a fixed partial charge to each atom.

V i j
LJ = 4εdepth

[(
σ

Ri j

)12

rep
−
(

σ

Ri j

)6

vdW

]
(2.77)
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where εdepth is the depth of the potential, Ri j is the distance between the interacting particles
i and j, and σ is the distance at which V i j

LJ is 0. While the computational cost of bonded
interactions increases linearly with the number of atoms (Natom), non-bonded interactions
scale as N2

atom since they require the computation of all pairs of atoms. Due to the fast
decrease of the vdW+repulsion potential with the distance, a cutoff value of around 10 Å
may be employed. In this way, only the atom pairs whose internuclear distance is lower
than the cutoff are considered and, hence, the computational cost decreases. On the contrary,
the use of cutoff distances is not indicated for the calculation of the electrostatic potential
because of the R−1 long range decay. In these cases, methods like the Particle Mesh Ewald
summation may improve the performance.[64]

Additionally, more terms may be included in the total potential Vtotal to describe it bet-
ter. In all likelihood, the most relevant addition is polarization, whose inclusion is not
possible when the charges are fixed on the atoms. For this, polarizable force fields have
been developed. They usually include atomic multipole parameters to model permanent
electrostatics and, also, atomic induced dipole parameters to represent polarization. In this
way, they achieve a better physical description of the system, specially in environments where
atomic charge delocalization is relevant.[65]

Finally, reference data is required to parametrise any Force Field. This has a strong empirical
character and, therefore, each Force Field has a different purpose depending on the criteria to
choose the parameters and how the Force Field was developed as a whole. As a consequence,
one needs to choose an appropriate Force Field for the system, based on critical evaluation of
the existing literature.

Periodic Boundary Conditions

The amount of atoms that can be simulated with MM methods (up to a few millions) is
still relatively small compared to the usual number of atoms in macroscopic systems. As a
result, the surface/bulk molecule ratio is very large, leading to excessive surface effects in the
simulation. To avoid this, Periodic Boundary Conditions (PBC) can be employed. Within this
model, the system is placed in an octahedral/orthorhombic box that is replicated along the
three dimensions. Therefore, the equations of motion are integrated for only one box (primary
cell) and all the other replicas (virtual cells) mimic its motion. Moreover, if one molecule
leaves the primary cell, another one with the same momentum appears on the opposite side
to conserve the number of atoms in the cell. In this way, PBC allow the simulation of bulk
properties in MM calculations with a limited number of primary molecules.[53]
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Thermostats and Barostats

Chemical processes usually take place at constant temperature and pressure (NPT ensem-
ble). Therefore, it is convenient to use thermostats and barostats to keep these variables
constant.[58] The instantaneous temperature is related to the velocity of the particles and,
hence, the kinetic energy of the system:

Tinstantaneous =
2T

kBNDOF
(2.78)

where kB is the Boltzmann constant and NDOF is the number of degrees of freedom. In this
sense, the simplest thermostat is velocity rescaling [66], which increases or decreases the
velocities after a given number of time steps according to:

vnew = λvold (2.79)

where λ is defined as:

λ =

√
T

Tinstantaneous
(2.80)

In this way, the kinetic energy of the system equals the kinetic energy at the target temperature
T . This algorithm is very easily implemented in MD codes but, if it is frequently used in the
simulation, it suppresses the fluctuations in the kinetic energy, leading to biased trajectories.
Alternatively, one can use other thermostats, such as the Langevin thermostat [67], which
was used in this work. In this case, the velocities of the atoms are modified by means of a
friction coefficient γ , and a random force Frandom that keeps the temperature constant and
counteracts the friction. As a result, the first Hamilton equation (2.68) is now:

d pi

dt
= Fi − γvi +Fi,random (2.81)

where vi is the velocity of atom i. Therefore, the friction is more noticeable in the fastest
atoms.

During the MD simulations, the pressure of the system is obtained as:[68]

P =
1

3V

(
3NkBT +∑

i̸= j
Ri, jFi, j

)
(2.82)

Where V is the volume of the periodic box, and Ri, j and Fi, j are the distances and forces
between atoms i and j respectively. In order to keep a constant pressure, V can be scaled
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by a factor ηp, which is equivalent to λ in equation 2.79. This is defined in the Berendsen
barostat [69] as:

ηp =

(
1+

∆t
τrel

ξ (P−P0)

) 1
3

(2.83)

where τrel is the relaxation time, ξ is the compressibility and P0 is the target pressure.

Another popular barostat is the Monte Carlo barostat.[70] Within this method, the pres-
sure is controlled stochastically through a trial volume change that may, or may not, be
accepted according to a Metropolis algorithm.

2.2.2 Gaussian Accelerated Molecular Dynamics

Most biological processes usually take place within microseconds, milliseconds or even
slower. Unfortunately, this is still too slow for standard MD, where simulations longer than 1
microsecond are very computationally expensive. As a result, high energy regions are not
well sampled in MD simulations and, thus, enhanced sampling techniques are required to
obtain information from these areas of the PES.[71]

Generally, a predefined reaction coordinate or collective variable in which to enhance the
sampling is required in most methods. However, this is not convenient when there is no a
priori knowledge of the system. In this sense, Gaussian Accelerated Molecular Dynamics
(GaMD) [72] add a harmonic boost potential to smooth the PES and reduce the high energy
barriers (Figure 2.3), allowing the sampling of multiple low-energy conformations without
the need of specifying a reaction coordinate.

Fig. 2.3 Graphical representation of the boosted potential in GaMD. The potential remains
the same above the threshold energy.
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In a system whose potential energy V is lower than a threshold energy E, a boost harmonic
potential (∆V ) is added, leading to a modified potential V ∗ according to:

V ∗ =V +∆V =V +
1
2

k(E −V 2),V < E (2.84)

where k is a force constant. On the other hand, if V ≥ E then the boost ∆V = 0 and V ∗ =V .

Enhanced sampling techniques must not modify the relative order of the potentials. Therefore,
if V1 <V2 then V ∗

1 <V ∗
2 . Replacing V ∗

1 and V ∗
2 by equation 2.84 gives:

E <
1
2
[V1 +V2]+

1
k

(2.85)

Although the relative order of V1 and V2 remains the same, the smooth potential leads to a
lower potential difference: V ∗

2 −V ∗
1 <V2 −V1. Similarly, replacing with equation 2.84:

E >
1
2
[V1 +V2] (2.86)

Knowing that Vmin ≤V1 <V2 ≤Vmax and combining both equations 2.85 and 2.86 then:

Vmax ≤ E ≤Vmax +
1
k

(2.87)

where Vmax and Vmin are the maximum and minimum potential energies of the system.
Equation 2.87 is only valid if Vmax ≤Vmin +

1
k and hence:

k ≤ 1
Vmax −Vmin

(2.88)

It is useful to define k as k = k0
Vmax−Vmin

where 0 < k0 < 1. In this context, a larger k0

corresponds to a larger boost potential, which is more convenient to enhance the sampling.
k0 can be set to its upper bound, where E =Vmax, or to its lower bound, where E =Vmin +

1
k .

According to the former:

k0 = min(1.0,k′0) = min
(

1.0,
σ0

σV
x

Vmax −Vmin

Vmax −Vavg

)
(2.89)

where Vavg is the average potential energy. Regarding the k0 lower bound:

k0 = min(1.0,k′′0) = min
(

1.0,
(

1− σ0

σV

)
x

Vmax −Vmin

Vavg −Vmin

)
(2.90)
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Finally, the standard deviation σ∆V of the boost potential ∆V (Equation 2.91) needs to be
smaller than a predefined parameter σ0 in order to get an accurate reweighted PES.

σ∆V = k(E −Vavg)σV ≤ σ0 (2.91)

where σV is the standard deviation of the non-boosted potential V . The energetic reweighting
allows to recover the original PES from the boosted potential by calculating the canonical
ensemble distribution p(A) as:

p(A j) = p∗(A j)
⟨eβ∆V (r)⟩ j

∑
M
i=1⟨p∗(Ai)eβ∆V (r)⟩i

, j = 1, · · · ,M (2.92)

where M is the number of bins, β = kBT and ⟨eβ∆V (r)⟩ j is the Boltzmann factor of the
ensemble average of the boost potential ∆V for the frames that are in the jth bin. It is possible
to approximate the Boltzmann factor by using a cumulant expansion. In GaMD simulations,
∆V follows a near gaussian distribution and, therefore, cumulant expansion to the second
order is enough to obtain an accurate approximation. In this sense, a low anharmonicity of
the ∆V distribution indicates an accurate reweighting of the PES.

GaMD algorithms take σ0 as input and all other parameters (Vmax, Vmin, Vavg and σV )
are calculated automatically following 5 steps. The first one is a conventional MD (cMD)
calculation in which the system equilibrates and no statistics are collected. The second one is
also cMD, but initial boost parameters are obtained to activate the GaMD algorithm. The
third one corresponds to a GaMD equilibration in which the parameters are kept fixed. In the
fourth, the parameters are updated until k0 reaches a maximum value. Finally, the fifth step
uses the previously converged parameters to run the GaMD production.

2.2.3 Binding Free Energy Calculations

The probability of a system to remain in a given state can be obtained from the free energy.
Unfortunately, it is impossible to calculate the absolute free energy in large systems and,
hence, obtaining relative free energies becomes more convenient:[71]

∆GBA =−β
−1ln

(
PB

PA

)
(2.93)

where PA and PB are the probabilities of sates A and B. In this context, molecular docking
[73] is a very popular technique in drug design that is based on the calculation of ligand
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binding free energies to find its binding pockets. It uses a stochastic algorithm that samples
the space and a scoring function to calculate the binding energy of each of the configurations
that it generates. Moreover, the receptor is usually taken to be rigid and, thus, it is very
computationally efficient. However, the results are often far from accurate.

In order to improve the results, the Molecular Mechanics Generalized Born Surface Area
(MMGBSA) [74] method may be employed. This method calculates the relative free energy
between two solvated states from a given MD trajectory of the complex. In order to get rid
of the fluctuations arising from the solvent-solvent interaction, that are usually an order of
magnitude larger than the binding energy, the MMGBSA method replaces the explicit solvent
by an implicit one that is calculated according to the Generalized Born implicit solvent model.
In its most common approach, the binding free energy is estimated as:

∆Gbind = ⟨∆Gel⟩C + ⟨∆GvdW ⟩C +∆Gpol +∆Gnp (2.94)

where ⟨∆Gel⟩C and ⟨∆GvdW ⟩C are the ensemble average of the electrostatic and van der Waals
free energies, which are calculated from the MM force field. ∆Gpol is the polar solvation
term that includes the electrostatic interactions between the complex and the implicit solvent.
And finally, ∆Gnp accounts for the complex-solvent interactions that are not included in
∆Gpol (dispersion, repulsion, etc).

2.3 Hybrid Quantum/Classical Methods

2.3.1 Quantum Mechanics/Molecular Mechanics

The calculation of large systems and their environment is possible by means of Molecular
Mechanics (MM). However, it leads to a significant loss in accuracy in the regions of interest
as it cannot describe quantum effects such as bond breaking or photophysical processes.
In order to deal with this problem, Quantum Mechanics/Molecular Mechanics (QM/MM)
techniques divide the system in two regions: an inner region, that is treated quantumly (QM
region), and an outer region, that is described at the MM level (MM region). The QM region
contains the solute of interest, whereas the MM region calculates the environment.[75]

The main challenge in QM/MM is the modelling of the interaction between both regions.
The most simple strategy is the subtractive scheme, in which the energy is calculated as:

Esub
QM/MM = EQM(I)+EMM(I +O)−EMM(I) (2.95)
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where the subscripts indicate the level of theory, and I and O refer to the inner and outer
regions respectively. In this way, the complete system is calculated at the MM level, while the
inner region is computed at both MM and QM. Then, the inner MM calculation is subtracted
to avoid double counting. As a result, the description of the interaction between the QM
and the MM regions is classical. Moreover, in principle, the inner region is not polarized by
the outer region. However, most methods nowadays include polarization by including the
outer charges in the QM Hamiltonian. Alternatively, the energy in the additive scheme is
calculated as:

Ead
QM/MM = EQM(I)+EMM(O)+EQM/MM(I/O) (2.96)

where EQM/MM(I/O) is the interaction energy between both regions and it is defined as:

EQM/MM(I/O) = Ebonded
MM (I/O)+EvdW

MM (I/O)+Eel(I/O) (2.97)

The van der Waals (EvdW
MM (I/O)) and bonded (Ebonded

MM (I/O)) terms are computed classically.
Regarding the electrostatic term Eel(I/O), there exist several schemes. The most straightfor-
ward way is the mechanical embedding. Within this approach, the electrostatic interaction is
computed classically and, hence, the QM region is not polarized by the MM region. In order
to include this polarisation, the electrostatic embedding scheme uses an effective hamiltonian
that includes the charges of the MM region. In this way, the QM wave function is polarized
by the point charges of the outer region. This model yields reasonable results but it still
does not account for the polarisation of the MM region by the QM region. This is done
by the polarizable embedding, in which the mutual polarization between both regions is
calculated self-consistently. Therefore, it also requires a polarizable force field to describe the
MM region. This makes the polarizable embedding scheme very computationally expensive
and, thus, even though it is the most accurate approach, electrostatic embedding is more
commonly used.[75]

No matter the partition scheme, the QM region may suffer from overpolarisation due to
the lack of Pauli repulsion from the MM region. As a result, there is an artificial attraction
between both regions that can be avoided by using screening terms. Furthermore, QM/MM
methods generally struggle with the description of the I/O interface, specially when it in-
volves covalent bonds. In these cases, the link atom scheme adds boundary atoms to each
of the regions to prevent the presence of radicals in the QM region. Alternatively, in the
localised-orbital scheme, the QM orbitals are frozen, keeping both electrons in the inner
region.[75]



2.3 Hybrid Quantum/Classical Methods 40

2.3.2 Polarizable Continuum Model

Similarly to QM/MM, the polarizable continuum model (PCM) approach also simulates
the effect of the environment in a classical way. However, instead of including the sol-
vent molecules explicitly, PCM introduces a dielectric continuum to reproduce its effect
implicitly.[37]

Fig. 2.4 Graphical representation of the cavity surfaces in PCM. The solvent rolls over the
solvent-excluded surface to generate the solvent-accesible surface.

The solvation free energy is defined as:

∆Gsol = Gsol −Gvacuum = ∆Gele +∆Gcav +∆Gdis +∆Grep (2.98)

where ∆Gcav is the energy that results from the rearrangement of the molecules when a
solute is introduced, and ∆Gele, ∆Gdisp and ∆Grep are the electrostatic, dispersion and
repulsion contributions. In this context, PCM defines a cavity around the solute, the solvent
accesible surface (SAS), whose area is created by "rolling" a solvent molecule over the
solvent-excluded surface generated by the van der Waals radii (Figure 2.4). Within this
model, ∆Gcav, ∆Gdisp and ∆Grep are approximated empirically, as they are proportional to
the SAS. Regarding the electrostatic interactions, they mainly contribute to the interaction
potential (Vint) of the effective Hamiltonian:

Gsol = ⟨Ψsol| Ĥ0 +
1
2

Vint |Ψsol⟩ (2.99)

and
Vint(r) =

∫
σ(rs)

|r− rs|
drs (2.100)

where σ(rs) are the charges that are distributed along the SAS and generate the continuum,
and |r− rs| accounts for the distance of the solute to the discrete values of σ(rs). Mutual
polarization appears because σ(rs) depends also on Vint . As a result, both σ(rs) and Vint need
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to be calculated self-consistently according to the Self Consistent Reaction Field (SCRF),
and the wave function is optimised according to the effect of the solvent. Finally, since the
σ(rs) of the SAS are related to the continuum dielectric constant, different solvents can be
modelled by changing this parameter.[37]

When modelling excited states, we can distinguish between two responses that result from
the continuum-solute mutual polarization. The first one, which is known as the dynamical
response, corresponds to the fast equilibration of the electrons of the solvent due to the
changes in the electronic density of the solute upon excitation. The second one, the inertial
response, refers to the slower equilibration of the nuclei of the solvent. The absorption
spectrum of the molecule is calculated assuming a vertical excitation, i.e., the atoms in
the solute remain in the same position as in the ground state and there is only dynamical
response from the solvent (non-equilibrium solvation). In a first step, the energies of the
excited states are calculated using the linear response approach, in which a correction based
on the transition density is added to consider the dynamical response. Then, the energy can
be corrected further using the sate specific approach, that is based on the electronic density
difference between the ground state and an specific excited state. Conversely, optimization
processes present larger relaxation times and, hence, the atomic nuclei of the solvent have
time to equilibrate (inertial response). In these cases, equilibrium solvation calculations are
indicated.[76]



Computational Details

3.1 Classical Simulation Details

The initial structures were generated with CHARMM-GUI[77], and the trajectories were
obtained with AMBER 20[78] and Tinker-HP[79]. Moreover, preliminar binding pockets
were found with AutoDock Vina[80]. All trajectories were analysed using cpptraj[81],
including the clustering analysis, the root mean square deviation (RMSD), and the calculation
of distances. VMD[82] and PyMOL[83] were used to visualize the trajectories and make the
figures in this work. More specific details can be found in the following subsections.

3.1.1 Initial structures

The crystallized structure of the NaV 1.5 channel [24], PDB ID 7FBS, was taken from the
Protein Data Bank (PDB).[84] Two models, the whole protein and a truncated pore model of
the NaV 1.5 channel, were selected to run the simulations. The truncated pore model consists
of the S5 and S6 α helixes of domains I-IV, whereas the whole channel model includes all α

helixes (S1-S6) of domains I-IV. Both proteins were embedded inside a 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) lipid bilayer using the CHARMM-GUI membrane
builder [77], and 4 disulfur bonds, between cysteines 281-336, 909-918, 1365-1386 and
1730-1744, were included as specified in the original pdb file. The structure was then
solvated in aqueous 0.15M NaCl solution (physiological concentration) in a rectangular
periodic box. The whole protein model includes 253 and 250 POPC molecules in the upper
and lower layers, respectively, resulting in a total of 261464 atoms in the system: 67402 in
the membrane, 18587 in the protein and 175475 in the aqueous solution. On the other hand,
the truncated pore model only includes 100 and 105 POPC molecules in the bilayer, which
are a total of 111566 atoms: 27470 in the membrane, 9684 in the protein and 74412 in the
aqueous solution. Likewise, a solvated 0.15 M NaCl POPC lipid bilayer with 111 lipid per
layer was built using the CHARMM-GUI membrane builder without embedding any protein.
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The initial diprotonated trans-DAD geometry (DADH2+
2 ) was built using GaussView [85],

which was later optimized at the M06-2X[86]/cc-pVDZ[55] level of theory, and in implicit
water solvation according to the implementation of IEFPCM[87] in Gaussian16[88]. The
restrained electrostatic potential (RESP) charges were calculated at the Hartree-Fock/6-31G*
level of theory with Gaussian16. For the non-polarizable force field simulations, the topology
and the coordinate files were generated with Antechamber [89], parmchk2 and tleap as
implemented in AmberTools20[78] to include the parameters of DAD on top of the initial
files created by CHARMM-GUI. The Amber FF19SB [90], TIP3P[91], GAFF2[92] and
Lipid21[93] force fields were used for the protein, water, ligand and lipids, respectively.
For the polarizable force field simulations, diprotonated DAD was parametrised, using
poltype2[94], to get its AMOEBA[95] parameters. Then, the topology and the coordinate
files were created following the same procedure as in [96].

3.1.2 Docking

The ligand pdbqt file was created using Obabel[97] and then, the azo torsional angle was
locked to study the binding pockets of trans-DADH2+

2 using AutoDock vina[80]. The
receptor in the docking calculation was the truncated NaV 1.5 channel, whose pdbqt file was
previously obtained with AutoDock. The location of the binding pockets were restrained to a
box of 40Å x 40Å x 30Å centered on the pore of the channel. Finally, an exhaustiveness = 8
was specified for the calculation.

3.1.3 Molecular Dynamics Details

Non-polarizable Force Field Calculations

All MD non-polarizable calculations were performed using AMBER 20 [78]. In all cases, the
multistep procedure recommended by CHARMM-GUI was used for initial relaxation. First,
the system was minimized for 2500 steps using the steepest descent algorithm, followed
by 2500 steps using the conjugate gradient method, which is more efficient close to the
minimum. Then, the system was progressively heated from 0 K to 303.15 K in the NVT
ensemble with a 1 fs time-step, and using the Langevin thermostat [67] with 2.0 ps-1 collision
frequency. Finally, a 2 fs time-step production was performed in the NPT ensemble. Once
again the temperature was controlled with the Langevin thermostat (1.0 ps-1) at 303.15 K.
On the other hand, the pressure was controlled with the Berendsen barostat [69] at 1.0 bar. In
both the heating and the production, the electrostatic interactions were calculated using the
particle-mesh Ewald method with a grid spacing of 1.0 Å, and the cutoff for the non-bonded
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interactions was set to 9 Å. Moreover, the bonds involving hydrogen atoms were constrained
using SHAKE[61] and the Leap-frog integrator[60] was used. Finally, the dihedrals involved
in the C-C-N=N-C-C of DADH2+

2 were constrained according to [98] to keep DADH2+
2 in

the trans conformation. The length of the production depended on the simulated system and
will be indicated in the results section.

Polarizable force field calculations

A POPC membrane was simulated with the AMOEBA force field[95] using the Tinker-HP
[79] package. The simulation started from the equilibrated POPC membrane calculated with
Amber. First, the system was minimized for 2000 steps using the steepest-descent algorithm.
Then, it was heated in the NVT ensemble using the Bussi thermostat[99] at 303.15 K and
the RESPA integrator[63] for 50 ps (2 fs time-step). Finally, a 60 ns (2 fs time-step) NPT
production was run using the particle-mesh Ewald method, a non-bonded cutoff of 9 Å,
the OPT4 polarization technique[100], the Bussi thermostat at 303.15K, the Monte Carlo
barostat[70] to keep the pressure at 1 atm, and the RESPA integrator.

3.1.4 Gaussian Accelerated Molecular Dynamics details

Starting from the most favourable docking pose, a 100 ns conventional MD (cMD) simulation
was performed. Then, three trial dual-GaMD simulations, where both the total and dihedral
potentials are boosted, were calculated to determine the optimal σ0 values (3, 4 or 5).
A total of 1000000, 5000000, 2500000 and 20000000 steps were calculated for the first
(cMD), second (preliminary collection of statistics), third (GaMD equilibration with fixed
parameters) and fourth (GaMD parameters update) GaMD phases, respectively. Next, with
the selected parameters, 4 independent 1 µs GaMD production GaMD trajectories (fifth
GaMD phase), differing on their initial velocities, were simulated starting from the last frame
of the previous 100 ns cMD production. In all cases, the same general specifications as in the
non-polarizable MD calculations were used. Finally, the energy reweighting was performed
using PyReweighting-2D.[101] To do this, the RMSD of the ligand and the distance between
the N in the amine located on the side on the amide and the centre of mass of the DEKA
aminoacids, were selected as the reaction coordinates.

3.1.5 Molecular Mechanics Generalized Born Surface Area details

After identifying the binding pockets from the GaMD simulation, 100 ns of cMD were
calculated to explore their stability and compute their relative free energy with MMGBSA.
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The analysis was based on 1000 cMD frames. Furthermore, an energy decomposition analysis
was performed by taking into account the residues within 7Å from the ligand that are present
in at least 2% of the frames.

3.2 Quantum Mechanics calculation details

3.2.1 Dynamic Absorption spectra

The script main_qminputs.py from MoBioTools [102] was used to extract 100 snapshots from
the cMD simulations that were performed for the MMGBSA analysis of the binding pockets,
and to generate the Gaussian16[88] QM/MM inputs to compute the absorption spectrum.
The QM region included trans-DADH2+

2 , and the first 5 excited states were computed at
the M06-2X/cc-pVDZ level of theory. The MM region consisted of the point charges of the
rest of the system and, hence, the QM/MM calculation followed an electrostatic embedding
scheme. The analysis of the excited states was performed using TheoDORE.[56] The same
procedure was repeated for a 100 ns cMD of DADH2+

2 in water. From this simulation, single
point calculations of 100 snapshots were calculated using QM/MM, and then, the explicit
water molecules were removed from the frames to perform QM/PCM calculations in the
same configurations. To plot the spectra, a convolution of gaussians (σ=0.3) was performed.
The height of the gaussians corresponds to the oscillator strength of the excitations.

3.2.2 Static Absorption spectra

Single point TDDFT calculations of deprotonated trans-DAD (DAD), DADH2+
2 and azoben-

zene in both gas phase and solvent (non-equilibrium IEFPCM), water for the DAD species
and dichoromethane (DCM) for azobenzene, including the first 5 excited states, were per-
formed at the B3LYP[47]/cc-pVDZ, CAM-B3LYP[49]/cc-pVDZ, ωB97XD[50]/cc-pVDZ
and M06-2X[86]/cc-pVDZ levels of theory in Gaussian16. In both gas phase and solvent, the
geometries were previously optimized with their corresponding levels of theory (minima in
their PES but different geometries). In addition, the same calculations were repeated for DAD
and DADH2+

2 with geometries optimized at gas M06-2X/cc-pVDZ (common geometry).
Then, the SA(5)-CASSCF absorption spectrum was computed in trans-DAD, trans-DADH2+

2

with a 14 electrons, 13 orbitals active spaceππ∗ (14,13 AS), and azobenzene (12,11 AS) in
gas phase at their gas M06-2X/cc-pVDZ geometries using OpenMolcas.[103] The CASPT2
energies were then calculated with an imaginary shift of 0.3 and with and without IPEA shift.
Finally, the DAD and DADH2+

2 geometries were optimized at the SA(3)-CASSCF level of
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theory with an 8,7 AS, and the CASPT2 energies were computed under the same conditions
as before. The molecular orbitals were visualized using gmolden.[104] Figure 3.1 shows the
orbitals in the AS.

Fig. 3.1 DAD molecular orbitals (A) in the CASSCF active space (geometries at M06-2X)
and (B) in the CASSCF optimization. (C) Active space in azobenzene. The orbitals in DAD
and DADH2+

2 are very similar orbitals so only one set is presented.

3.2.3 Photoisomerization PES

The trans-cis photoisomerization PES of azobenzene, DAD and DADH2+
2 in gas phase,

implicit water (DAD species) and DCM (azobenzene), were calculated with TDDFT (M06-
2X/cc-pVDZ) in Gaussian16. First, a conventional geometry optimization of the bright
excited state (S2) was performed until a minimum point was found or a crossing point with
the S1 was reached. In the case of degeneracy with the S1, the geometry optimization of
the S1 state was calculated from the S2/S1 structure. When the S1 minimization lead to a
crossing point with the S0, the trans-cis transition state (TS) structure was calculated in the
ground state. Then, an Intrinsic Reaction Coordinate (IRC) calculation was performed to
connect the TS with the cis and trans conformations. In the cases where the minimization of
the excited states lead to a stationary point, SHARC [105] was used to optimize the S2/S1 or
S1/S0 intersections. Equilibrium solvation was used in the PCM excited states optimizations.



Results

In this section, the NaV 1.5 binding pockets of DADH2+
2 will be presented, followed by the

absorption spectra of both DAD species and their photoisomerization pathways.

4.1 Binding pocket search

4.1.1 NaV 1.5 channel equilibration

The NaV 1.5 channel has 18587 atoms, requiring many computational resources even at the
MD level of theory. A common strategy to improve the performance in ion channel studies is
focusing on the pore (S5-S6 in Figure 1.8), and excluding the VSs (Voltage Sensing domains
S1-S4 in Figure 1.8) from the calculation.[106] This approximation is only valid if the VSs
do not substantially change the structure of the pore. In order to ensure that this is also
the case in the NaV 1.5 channel, two 500 ns MD simulations of the protein embedded in a
solvated POPC membrane were performed. In one of them, the protein only consists of the
pore, whereas the other calculation also includes the VSs (whole channel simulation) as
shown in Figure 4.1.

Fig. 4.1 a) Top view of the protein in the simulation containing the whole NaV 1.5 channel
(pore + VSs). b) Top view of the protein in the simulation containing only the NaV 1.5 pore.

The energy, the temperature, the pressure and the density remain stable throughout both MD
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trajectories. What takes more time to converge is the RMSD (Figure 4.2), which measures
the internal motion of the pore relative to its initial position in both simulations.

Fig. 4.2 a) RMSD of the pore in the simulation containing the whole NaV 1.5 channel (pore +
VSs). b) RMSD of the pore in the simulation containing only the NaV 1.5 pore.

The RMSD in Figure 4.2b did not converge in the 500 ns simulation, maybe due to the
absence of the VSs. In any case, ∼1.5Å oscillations are not usually relevant so a clustering
analysis of the last 100 ns is performed to find representative structures of the protein in
both simulations. The RMSD between the common atoms of the representative structures is
3.91 Å. It is of the same order of magnitude as the RMSD with respect to the representative
structures (Figure 4.3), indicating that simulations containing only the pore are good enough.

Fig. 4.3 a) RMSD of the pore in the simulation containing the whole NaV 1.5 channel. b)
RMSD of the pore in the simulation containing only the NaV 1.5 pore. Both are relative to
their representative structures (the vertical lines indicate their positions in the trajectories).



4.1 Binding pocket search 49

Finally a longer trajectory (1200 ns) of the channel containing only the pore is calculated
to equilibrate the system further. According to Figure 4.4, a well equilibrated structure is
achieved after 400 ns of simulation. In the same way as before, a clustering analysis of the
converged frames is performed to find a representative structure of the pore. The resulting
representative structure will be taken as the docking receptor and as the starting point in
GaMD.

Fig. 4.4 RMSD of the pore in the 1200 ns simulation containing only the pore relative to the
first frame.

4.1.2 Docking: preliminary binding pockets of DAD

Table 4.1 shows the affinities of the docking binding modes of DADH2+
2 (occuring naturally

at pH=7.4) in the NaV 1.5 representative structure, and the RMSD of the ligand in the different
pockets relative to the most favourable pose. The resulting modes are shown in Figure 4.5.

Mode Affinity (kcal/mol) RMSD (Å)
1 -8.71 0
2 -8.47 1.99
3 -8.12 1.96
4 -7.87 6.89
5 -7.61 7.78
6 -7.54 9.07
7 -7.47 8.00
8 -7.28 8.29
9 -7.15 6.34

Table 4.1 Affinities and RMSD of the binding modes of DADH2+
2 according to docking.
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Fig. 4.5 a) Binding modes of DADH2+
2 in the NaV 1.5 channel according to docking. Modes

1, 4, 5, 6 and 9 are orange, yellow, purple, red and black, respectively. Modes 2, 3, 7 and
8 were excluded because they resemble either 1, 5 or 6. b) Most favourable pose (mode 1)
according to docking.

As it can be seen in Table 4.1, the RMSD of some modes are very similar, indicating that they
are different poses belonging to the same binding pocket. This is the case of modes 1, 2 and
3; 5 and 7; and 6 and 8. Finally, mode 1 (Figure 4.5b) will correspond to the initial structure
in the GaMD simulation. In this way, the enhanced sampling starts from a conformation that
is potentially stable.

4.1.3 GaMD: binding pockets of DAD

As explained in the Theoretical Methods section, k0 needs to be 1 in order to work with the
largest possible boost potential (∆V ), which is the most convenient for the enhanced sampling.
At the same time, the standard deviation of ∆V (σ∆V ) needs to be smaller than a predefined
parameter σ0 according to Equation 2.91. In order to ensure an accurate reweighting, σ∆V ,
and hence, σ0, should be as small as possible. Therefore, the strategy is to select the smallest
σ0 that allows k0 = 1.

In this sense, Table 4.2 shows the σ∆V and k0 values for both the potential and dihedral boosts
of three trial GaMD simulations differing on σ0. From these results, the most appropriate
σ0P and σ0D for the production are 4 and 3, respectively. Note that trial simulations with
σ0 < 3 make no sense because in all cases σ∆V > 2.
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Potential boost Dihedral boost
σ0 σ∆V k0 σ∆V k0
3 3.45 0.61 2.63 1
4 2.51 1 2.54 1
5 2.49 1 2.54 1

Table 4.2 Selection of σ0P and σ0D for the GaMD production.

Four 1µs GaMD production simulations, differing on the initial velocities, were then per-
formed starting from the most favourable docking pose (Figure 4.5b). Although specifying
collective variables is not necessary for the GaMD production, they are required for the
energy reweighting. By inspecting the resulting GaMD trajectories, the side of DADH2+

2

containing the amide seems to get closer to the DEKA filter in some of the configurations.
Hence, a convenient reaction coordinate is the distance between the DEKA centre of mass
and the amine next to the amide (Figure 4.6B). Moreover, measuring the RMSD of DADH2+

2

would also help in the identification of potential binding pockets, since configurations be-
longing to the same cluster have similar RMSD values. This results in the reweighted energy
map in Figure 4.6A, where the 4µs are combined. Furthermore, the anharmonicity of the
∆V distribution is 0.0184 (near gaussian distribution), indicating that the reweighting is
sufficiently accurate.

Fig. 4.6 A) Reweighted 2D energy map resulting from the four 1µs GaMD production
simulations. The black dot indicates the position of the most favourable docking pose. B)
Distance to DEKA reaction coordinate. The purple balls represent the DEKA aminoacids.
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Based on Figure 4.6A, the most favourable docking pose is close to pocket 1, but it is not an
actual binding site. Therefore, docking can only serve as an initial estimation. Moreover,
Figure 4.6A suggests that there might be more than one minima in pocket 3. In order to clear
this out, a clustering analysis, requesting 4 representative structures of the GaMD production,
is performed. Reordering the snapshots in the trajectory according to their corresponding
cluster results in the following RMSD graph:

Fig. 4.7 RMSD of the GaMD trajectory reordered according to the identified clusters.

Clusters 1 and 2 correspond to binding pockets 1 and 2 in Figure 4.7, respectively. Likewise,
clusters 3 and 4 correspond to pocket 3. Figure 4.8 shows the representative structures. The
resemblance in the RMSD and in the structures of clusters 3 and 4 indicate that they are
actually different conformations belonging to the same binding pose: pocket 3.

Fig. 4.8 Clusters 1, 2, 3 and 4 resulting from the clustering analysis of the GaMD trajectory.
The purple balls indicate the position of the DEKA aminoacids and DADH2+

2 is in orange.
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Starting from the representative structures of clusters 1, 2 and 4, 100 ns conventional MD sim-
ulations were performed to determine the relative stability of the binding pockets. DADH2+

2

in pocket 2 is not stable, indicating that it is not an actual binding pose. Conversely, DADH2+
2

remains in pockets 1 and 3 during the 100 ns of their corresponding simulations, so they seem
to be stable. MMGBSA analysis of 1000 frames of the trajectories estimate a free energy of
−56.95 kcal/mol and −36.56 kcal/mol for pockets 1 and 3, respectively. Therefore, pocket 1
is the most stable binding pose of DADH2+

2 in the NaV 1.5 channel. However, pocket 3 is also
an interesting mode due to its closeness to the DEKA filter, as it may block ion conduction.
In this sense, Table 4.3 and Figure 4.9 show the residues that interact the most with DADH2+

2

according to the MMGBSA decomposition analysis of both pockets.

Residue ∆GvdW ∆Gel ∆Gpol ∆Gnonpol ∆Gtot

Pocket 1 ASN297 -2.01 -6.57 3.80 -1.29 -6.07
PHE460 -2.54 -0.39 -0.67 -1.82 -5.42

Pocket 3
THR412 -2.44 -3.97 3.41 -1.63 -4.63
PHE413 -2.45 -1.42 1.74 -1.74 -3.87
SER545 -1.39 -4.04 2.86 -1.14 -3.71

Table 4.3 Total energies (kcal/mol) of the most interacting residues in pockets 1 and 3.
Electrostatic, vdW, polarization and non-polarization energy contributions are also shown.

Fig. 4.9 Residues that interact the most with DADH2+
2 in pockets 1 and 3 according to the

MMGBSA analysis. The purple dots indicate the position of the DEKA aminoacids. Dashed
lines indicate electrostatic interactions between a proton of DADH2+

2 and an oxygen of an
aminoacid.



4.2 Absorption spectrum of DAD 54

The major contributions to stabilisation in both pockets are of electrostatic nature (∆Gel).
The protonated amino groups in DADH2+

2 interact with the partial negatively charged O
in ASN297 in pocket 1, and in THR412 and SER545 in pocket 3. This indicates that the
protonation state of DAD is crucial in the stabilisation of the binding pockets. Therefore, the
most favourable poses of deprotonated DAD may differ from the binding modes described
here. It is particularly important to take this into account because, as it was mentioned in the
introduction, only deprotonated DAD diffuses rapidly across the cell membrane and enters in
the ion channel. However, DAD will most likely protonate again inside the pore of NaV 1.5,
which is why the present work focuses on DADH2+

2 . Nevertheless, it would be interesting to
repeat the same study with deprotonated DAD.

Further stabilisation in the binding pockets is achieved thanks to the van der Waals in-
teractions (∆GvdW ) arising from the benzene rings in PHE460 and PHE413 in pockets 1 and
3, respectively. Moreover, minor contributions from aminoacids that are not present in Table
4.3 also help in the stabilisation of the binding pockets. Regarding the polar (∆Gpol) and
non-polar (∆Gnonpol) solvation contributions, it seems that ∆Gpol is more unfavourable when
the ∆Gel contribution is higher. On the other hand, ∆Gnonpol is always of the same order of
magnitude. Finally, although DADH2+

2 in pocket 3 is very close to the DEKA aminoacids,
they do not contribute strongly to its stabilisation. Nonetheless, the presence of DADH2+

2

may still hinder the interaction between DEKA and the Na+ ions.

4.2 Absorption spectrum of DAD

Table 4.4 shows the nπ∗ and ππ∗excitation energies of deprotonated (DAD) and diprotonated
(DADH2+

2 ) in gas phase and in implicit water, using different DFT functionals. In all cases,
the involved orbitals are very similar so only one set is shown in Figure 4.10 as an example.

Fig. 4.10 Molecular orbitals involved in the S1 nπ∗ (up) and the S2 ππ∗ (down) excitations
in DADH2+

2 in water at the M06-2X/cc-pVDZ level of theory.
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M06-2X is a hybrid meta-GGA functional, while B3LYP, CAM-B3LYP and ωB97XD are
hybrid GGA. In addition, CAM-B3LYP and ωB97XD include long-range corrections, which
is probably why they provide almost the same results in all the considered scenarios. Re-
garding M06-2X, it estimates similar ππ∗ energies to CAM-B3LYP and ωB97XD, whereas
nπ∗ is closer to B3LYP. Upon comparison with the experimental ππ∗ excitation, it seems
that B3LYP provides the most accurate results. However, it is well known [49] that B3LYP
fails in the calculation of electronic excited states. Moreover, a B3LYP calculation including
vibrational motion, which would be more realistic than the single point calculations at the
optimized geometry, would probably lead to energies lower than the experimental value. On
the other hand, based on the experimental value, M06-2X, CAM-B3LYP and ωB97XD seem
to be equivalent. Similar results are obtained when all the vertical excitations are calculated
from a gas-phase M06-2X optimized geometry (See Appendix A).

DAD DADH2+
2

Gas Water (IEFPCM) Gas Water (IEFPCM)
nπ* ππ* nπ* ππ* nπ* ππ* nπ* ππ*
f ∼ 0 f ∼ 1 f ∼ 0 f ∼ 1 f ∼ 0 f ∼ 1 f ∼ 0 f ∼ 1

B3LYP 2.64 2.99 2.69 2.72 2.48 3.36 2.64 2.93
CAM-B3LYP 2.87 3.51 2.91 3.26 2.77 3.79 2.86 3.46

ωB97XD 2.85 3.53 2.89 3.28 2.76 3.81 2.84 3.49
M06-2X 2.64 3.52 2.69 3.26 2.55 3.79 2.65 3.42

exp - - - - - - - 2.73
Table 4.4 nπ* and ππ* vertical excitation energies (eV) of DAD and DADH2+

2 in gas phase
and in implicit water at the TD-B3LYP, TD-CAM-B3LYP, TD-ωB97XD and TD-M062X
levels of theory, using the cc-pVDZ basis set. The starting geometries were optimized at the
corresponding level of theory. f indicates the approximate oscillator strength of the states.
The experimental value for the ππ* excitation in water [21] is also specified.

No matter the functional, when both DAD and DADH2+
2 are solvated in water, the nπ∗

energy increases and the ππ∗ energy decreases. This energy shifts can be attributed to
solvatochromism in polar solvents (water). In this case, it seems that the dipole moment
in the nπ∗ state is smaller than the dipole of the ground state. Hence, there is a greater
stabilization of the ground state by the polar solvent (blue-shift). On the contrary, the dipole
moment in the ππ∗ state seems to be larger than in the ground state, leading to a greater
stabilization of the ππ∗ state and the subsequent red-shift. As a result, the gap between
both electronic states decreases in polar environments. This is convenient to avoid the
electronic relaxation through pathways different from the trans-cis photoisomerization, as
less excess energy is available to make them accessible upon excitation to the bright ππ∗ state.
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Conversely, the nπ∗ energy decreases and the ππ∗ energy increases upon protonation (larger
S1-S2 gap). Considering that the main goals of the derivation of azobenzene are red-shifting
the ππ∗ energy and decreasing the S1-S2 gap[13], it seems that the effect of the functional
groups is less noticeable in DADH2+

2 . In this sense, Table 4.5 shows the nπ∗ and ππ∗

azobenzene excitation energies, which essentially involve the same orbitals as DAD.

Gas DCM (IEFPCM)
nπ∗( f ∼ 0) ππ∗( f ∼ 1) nπ∗( f ∼ 0) ππ∗( f ∼ 1)

B3LYP 2.54 3.76 2.56 3.60
CAM-B3LYP 2.74 4.18 2.75 4.03

WB97XD 2.72 4.18 2.74 4.03
M062X 2.51 4.27 2.52 4.12

Exp - - 2.5-3.1 3.8
Table 4.5 nπ∗ and ππ∗ vertical excitation energies (eV) of azobenzene in gas phase and in
implicit DCM at the TD-B3LYP, TD-CAM-B3LYP, TD-ωB97XD and TD-M062X levels
of theory, using the cc-pVDZ basis set. The starting geometries were optimized at the
corresponding level of theory. The experimental values were obtained from [14].

As expected, the S1-S2 gap is larger in azobenzene, since, compared to DAD and DADH2+
2 ,

the ππ∗ energy is significantly higher and the nπ∗ is slightly lower. The resulting azobenzene
- DADH2+

2 - DAD energy gap order can be related to the change in the geometry of the azo
moiety (C-N=N-C). According to Table 4.6, larger N=N bonds and shorter C-N bonds favour
the desired ππ∗ red shifting and the S1-S2 energy decrease. Therefore, the protonation state
of DAD affects the excitation energies due to the structural change that it produces. Finally,
note that the considered functionals follow the same trend as in Table 4.4, and that the effect
of the solvent is less noticeable in azobenzene because DCM is less polar than water.

C-N dist (Å) N=N dist (Å) N-C dist (Å)
DAD 1.40519 1.26417 1.41339

DADH2+
2 1.41831 1.24495 1.4232

Azobenzene 1.42488 1.24333 1.42487
Table 4.6 Bond distances in the Azo moiety of DAD, DADH2+

2 and Azobenzene at the
M06-2X/cc-pVDZ level of theory in gas phase.

The azobenzene-DADH2+
2 -DAD energy trend also appears at the CASSCF and CASPT2

levels of theory (Table 4.7), supporting the TDDFT observations. However, these excita-
tion energies are not always in agreement with the TDDFT estimations. As expected, the
CASSCF energies are very large but, fortunately, the MS-CASPT2 corrections provide more
reasonable results, indicating the importance of dynamic correlation in these kind of systems.
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DAD DADH2+
2 Azobenzene

nπ∗ ππ∗ nπ∗ ππ∗ nπ∗ ππ∗

SA(5)-CASSCF 4.20 5.29 4.21 5.56 4.18 6.18
MS-CASPT2 IPEA 3.07 3.52 2.96 3.90 2.93 4.47

MS-CASPT2 2.74 2.84 2.62 3.20 2.59 3.88
exp - - - 2.73 2.5-3.1 3.8

Table 4.7 nπ∗ and ππ∗ vertical excitation energies (eV) of DAD, DADH2+
2 and azobenzene

in gas phase at SA(5)-CASSCF and MS-CASPT2 with and without IPEA shift. The energies
are optimized at M06-2X/cc-pVDZ. Experimental energies taken from [21] and [14].

Regarding the MS-CASPT2 energies, the IPEA shifted results provide higher values com-
pared to the no IPEA calculations. This is the expected behaviour of the IPEA shift, an
empirical correction that assumes an underestimation of the excitation energies based on the
systematic errors that are found in the CASPT2 dissociation energies.[39] Upon comparison
with the experimental results, it seems that MS-CASPT2 performs better without the IPEA
shift. This makes sense considering that the shift is highly dependent on the amount of
dynamic correlation, which is large in the systems that are studied in this work. However, the
no IPEA MS-CASPT2 ππ∗ energies are still higher than the experimental values, perhaps
due to the lack of solvent in the CASSCF/CASPT2 calculations. In addition, it could be
because the calculations are not from the CASSCF/CASPT2 optimized geometries. In this
sense, Table 4.8 shows the SA(3)-CASSCF energies and their corresponding MS-CASPT2
corrections from the SA(3)-CASSCF optimized geometries in DAD, and the CASSCF and
CASPT2 azobenzene energies from the minimized structure at the CASPT2 level in [15].

DAD DADH2+
2 Azobenzene

nπ∗ ππ∗ nπ∗ ππ∗ nπ∗ ππ∗

CASSCF 3.82 4.91 3.71 5.47 3.10 6.16
MS-CASPT2 2.21 3.45 2.04 3.98 2.86 4.18

exp - - - 2.73 2.5-3.1 3.8
Table 4.8 nπ∗ and ππ∗ vertical excitation energies (eV) of DAD and DADH2+

2 in gas phase
at SA(3)-CASSCF and MS-CASPT2 without IPEA shift. The geometries are optimized at
SA(3)-CASSCF. Experimental and azobenzene energies taken from [21], [14] and [15].

Surprisingly, the ππ∗ energies get away from the experimental values but, at the same time,
they get closer to the TDDFT estimations. In any case, these results are not conclusive
because the CASSCF calculations use a different number of roots and a smaller active space
compared to the calculations in Table 4.7 (unfortunately, the ongoing studies under the same
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conditions as in Table 4.7 could not be included in this report). Finally, it was not possible to
determine the most proper functional among M06-2X, CAM-B3LYP and ωB97XD, as all
of them perform similar compared to the experiment. Nevertheless, M06-2X was selected
for the remaining calculations because its nπ∗ energy is usually closer to CASPT2, although
everything should be repeated with either CAM-B3LYP or ωB97XD. In fact, as they are
long-range functionals, CAM-B3LYP and ωB97XD will be a very interesting choice for
studying charge-transfer interactions in the protein environment in future works.

Up to now, vertical excitations from only the optimized ground state geometry were calcu-
lated. However, molecules are in constant motion and, hence, it is convenient to consider
several configurations in order to obtain a more realistic absorption spectrum. In this sense,
100 snapshots were extracted from a 100 ns MD simulation of DADH2+

2 in water. From
these geometries, single point excitations were calculated in both implicit (IEFPCM) and
explicit solvent (QM/MM) at the M06-2X/cc-pVDZ level of theory. The resulting spectra
are shown in Figure 4.11a.

Fig. 4.11 a) Static (PCM) and dynamic (PCM and QM/MM) absorption spectra of DADH2+
2

in water. b) Dynamic spectra of DADH2+
2 in water (PCM and QM/MM) and in the NaV 1.5

pockets 1 and 3 (QM/MM). The dashed lines indicate the nπ∗ and ππ∗ density of states.

The static PCM result is the closest to the experimental value. This is probably because the
minimum geometry in the ππ∗ surface is very close to the Franck Condon region (FC), i.e.,
the optimized ground state structure. Therefore, when the configurations deviate from FC,
the energies of both the ground and the ππ∗ states increase. However, the energy change
is higher in the ππ∗ surface, resulting in higher excitation energies in the dynamic spectra.
Upon comparison of QM/MM with PCM, it seems that PCM provides better results. Even
though in PCM the solvent is included implicitly, DADH2+

2 and water are mutually polarized
self-consistently. In this way, PCM succeeds in providing more accurate descriptions of
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the general bulk-solute interactions. On the other hand, the electrostatic embedding in the
performed QM/MM calculations does not consider the polarization of the water molecules
by DADH2+

2 , leading to the most distant energies compared to the experimental results.

Similarly, to study the effect that the environment has on DADH2+
2 in its NaV 1.5 bind-

ing pockets, 100 snapshots were taken from 100 ns MD simulations of DADH2+
2 in the

binding pockets. There are no significant differences between the resulting spectra in pockets
1 and 3 (Figure 4.11b). Moreover, both of them are slightly blue shifted compared to the
spectrum in water. According to the density of states, the main reason of this deviation is the
energy change in the ππ∗ state, which is probably due to the lower polarity in the protein
environment. In order to improve the calculations, the QM region should be bigger and, for
example, include the aminoacids that interact the most in the binding pockets or some water
molecules. The latter may also be convenient to get energies closer to the experimental value
in Figure 4.11a.

Finally, it is important to note that 100 snapshots are sufficient to get converged spec-
tra. In this sense, Figure 4.12 shows the average excitation of DADH2+

2 , weighted with
the corresponding oscillator strengths, in the different environments for 10-100 equidistant
snapshots. In all cases, the energy profiles flatten at around 70 snapshots.

Fig. 4.12 Average excitation energy of DADH2+
2 in the dynamic calculations for 10, 20, 33,

50, 67, 80, 90 and 100 snapshots.
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4.3 DAD Photoisomerization

Fig. 4.13 trans-cis photoisomerization pathway of DAD and DADH2+
2 in gas phase and

in water after excitation to the ππ∗ (bright) excited state. Energies (in eV) calculated at
M06-2X/cc-pVDZ level of theory relative to the FC ground state.

Figure 4.13 shows the trans-cis photoisomerization pathway of DAD and DADH2+
2 in gas

phase and in water, after excitation to the ππ∗ (bright) excited state, at the M06-2X/cc-pVDZ
level of theory. Similarly, the trans-cis photoisomerization pathway of azobenzene in gas
phase and in DCM is presented in Figure 4.14. Upon excitation, the ππ∗ state geometry
relaxes to a minimum or directly to a crossing point with the nπ∗ state. The minimum in
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the ππ∗ PES appears in gas phase in DAD and DADH2+
2 , and in both azobenzene PES.

This seems to be related to the red shift in the ππ∗ excitations. As explained earlier, when
solvating both DAD species in water, the ππ∗ excitation energy decreases, and the nπ∗

and ππ∗ states get closer in energy. This changes the PES profile close to FC and, in this
specific case, it results in the disappearance of the ππ∗ minima in water. Compared to
azobenzene in gas phase, the ππ∗ minima in the DAD species are closer to the corresponding
crossing points with the nπ∗ state. Therefore, DAD and DADH2+

2 will probably not stay
long in this minimum before reaching the crossing point. On the other hand, there is a larger
energy difference between the ππ∗ minimum and the crossing point with nπ∗ in azobenzene.
As a result, the excited molecule may stay in the minimum long enough to deactivate by
spontaneous emission, since its oscillator strength is large. Then, upon solvation, the ππ∗

minimum gets closer to the crossing point, but it does not disappear as in the DAD species.

Fig. 4.14 trans-cis photoisomerization pathway of azobenzene in gas phase and in DCM after
excitation to the ππ∗ (bright) excited state. Energies (in eV) calculated at M06-2X/cc-pVDZ
level of theory relative to the FC ground state.

When reaching the crossing points, the excited systems may jump to the nπ∗ surface. From
this point on, the PESs present no significant differences. In general terms, the system
relaxes to a crossing point with the ground state, which is 0.1-0.2 eV lower in energy than the
trans-cis TS in the ground state. Hence, if it crosses to the ground state and it reaches the TS,
it may photoisomerize to the cis-DAD. Alternatively, it may also go back to the trans-DAD.
The geometries also follow a similar trend throughout the photoisomerization pathways in all
systems. The structures of the ππ∗ minima and the crossing points with the nπ∗ state are
very close to FC. Then, when relaxing in the nπ∗ surface, the C-N=N-C dihedral rotates and
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reaches almost 90º in the crossing point with the ground state. The dihedral is even closer to
90º in the TS, which continues evolving until the cis minimum.

All this suggests that the key point in the photoisomerization is the absence or presence of
a minimum in the ππ∗ surface, and how close it is to the crossing point with nπ∗. This
depends on the derivation of azobenzene and on solvation, since both of them favour the
reduction in the energy gap between the ππ∗ minimum and the ππ∗/nπ∗ crossing point. As
a result, the solvated DAD species will probably present the best quantum yields among the
considered systems, given that the absence of an emissive ππ∗ minimum will not give the
chance of relaxation through this alternative pathway. Following the same reasoning, the
lowest quantum yield is expected in azobenzene in gas phase.

Note that there are no significant differences between the photoisomerizations of DAD
and DADH2+

2 despite the observed energy shifts in the absorption spectra. In principle,
the higher S1-S2 energy gap in DADH2+

2 could indicate a less efficient photoisomerization.
However, it could actually be more favoured compared to DAD, since the crossing point
between the nπ∗ and the ground state is closer to the TS. Nevertheless, we are considering
0.1 eV energy differences, which could also be errors in the DFT calculation, specially in the
excited/ground state intersection, where TDDFT often fails.

In any case, what is clear is that the environment strongly affects the DAD photoisomerization.
Hence, a proper characterization of the interactions with the environment will be required in
future works simulating the photoisomerization of DAD in the NaV 1.5 binding pockets.

4.4 Outlook

On the light of these results, it is clear that more calculations are needed in order to understand
the ion conduction blocking mechanism induced by DAD inside the NaV 1.5 channel. Like-
wise, a more extensive characterisation of the static and dynamic aspects of the deactivation
of DAD are also required for a deeper insight onto its photoisomerization mechanism. In this
sense, it would be convenient to calculate the whole photoisomerization PES with more DFT
functionals and at the CASPT2 level of theory. Then, upon comparison with the CASPT2
PES, a proper DFT functional could be chosen to simulate the photoisomerization of DAD,
using QM/MM, in one of its binding pockets and including relevant residues in the QM
region. In addition, we could also investigate the DAD photoisomerization by non-adiabatic
dynamics to obtain properties such as quantum yields and reaction times. Finally, MD
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calculations could be performed to explore the effect that DAD has on ion conduction.

Moreover, it was noted that electrostatic interactions play an important role in the stabilisation
of the binding pockets of DADH2+

2 . Hence, as mentioned earlier, it would be interesting
to repeat the same study with deprotonated DAD to find its corresponding binding pockets,
since they may differ from the ones of DADH2+

2 . Although DADH2+
2 is more abundant at

physiological pH, it exists in equilibrium with deprotonated DAD. Considering that only
neutral species are capable of diffusing across cell membranes and entering ion channels, it
is possible that the concentration of deprotonated DAD is higher than expected inside the
pore of NaV 1.5. Therefore, different binding pockets that depend on the protonation state
may result in different biological activities, which would be inconvenient.

Additionally, polarizable force fields would probably render a better description of the
interactions. Hence, a next step of this project involves the use of the AMOEBA force field,
as implemented in Tinker-HP, to find the binding pockets of DAD. Significant differences
compared to non-polarizable force fields would probably mean that the latter are not good
enough to study this system. In this sense, some preliminary results with AMOEBA have
already been obtained. Up to now, 60 ns of a POPC membrane have been simulated, and
some properties, shown in Figure 4.15, have been calculated and compared with a 1000 ns
POPC non-polarizable calculation.

All the properties depicted in Figure 4.15 are similar no matter the kind of force field.
Perhaps the most noticeable difference is the magnitude of the fluctuations in the area per
lipid graph (Figure 4.15A), where it seems that polarization helps in keeping it constant. On
the other hand, the differences in the electron density and the Deuterium order parameter
(SCD) cannot be exclusively attributed to the force field yet, as it is possible that the po-
larizable calculation has not converged in 60 ns. In any case, it is still interesting to carry
on with this study to analyze the effect of polarization on the interactions of DAD in the
binding pockets. To this end, the input system was prepared for a GaMD simulation in Tinker
and preliminary AMOEBA parameters were obtained using poltype2. Unfortunately, these
calculations could not be run due to the lack of computational resources.
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Fig. 4.15 Comparison of the area per lipid (A), the electron density across the membrane
(B), the deuterium order parameter (SCD) of the palmitic (C) and the oleic acid chains (D)
between a 60 ns POPC polarizable calculation and a 1000 ns non-polarizable one.



Conclusions

In this work, classical simulations, including docking, MD and GaMD, and static quantum
and QM/MM calculations were performed to find the binding pockets of DAD in the NaV 1.5
channel, compute its absorption spectrum in gas phase, solvent and in the most stable binding
pockets, and explore the photoisomerization mechanism of DAD in gas phase and in solvent.
The analysis of the resulting data lead to the following conclusions:

• Simulations containing only the pore of the NaV 1.5 channel are enough to calculate its
properties due to its resemblance to the pore structure in simulations containing the
whole protein.

• Docking analysis only serves as an initial estimation of the binding poses of DADH2+
2 ,

given that they differ from the more accurate GaMD results.

• Out of the 3 binding pockets calculated with GaMD, only pockets 1 and 3 represent
stable positions, where pocket 1 is the most favourable one. Furthermore, DADH2+

2 in
pocket 3 is very close to the DEKA aminoacids and, thus, it may hinder ion conduction.

• The most important contributions to the stabilisation of the binding pockets are of
electrostatic nature, indicating that deprotonated DAD may show different binding
pockets from the ones obtained for DADH2+

2 . Moreover, it would be interesting to
explore the effect of polarization by using polarizable force fields.

• Upon polar solvation, the nπ∗ and ππ∗ excitations in DAD get closer in energy due
to the relative stabilization of the ground and excited states. This is convenient to
avoid relaxation through pathways different from the trans-cis photoisomerization.
The derivation of azobenzene has the same effect, which is related to the change in the
geometry of the azo moiety. The opposite structural change occurs when protonating
DAD. Hence, the nπ∗/ππ∗ energy gap increases.
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• The inclusion of dynamical correlation is crucial in the excited states calculations
in azobenzene and the DAD species. Moreover, CASPT2 energies are closer to the
experimental results without the IPEA shift.

• The static PCM absorption spectrum renders lower energies than the dynamic spectra
because the minimum in the ππ∗ state is close to the FC region. Moreover, QM/PCM
offers a better description than QM/MM due to the inclusion mutual polarization
between the solvent and the solute by PCM. Finally, to improve the energies, the QM
region should be increased.

• The presence of a minimum in the ππ∗ state is key in the trans-cis photoisomerization.
Solvation and the derivation of azobenzene allow a lower energy gap from the ππ∗

minimum to the crossing point with nπ∗, which favours the photoisomerization. This
indicates that the interactions with the environment are crucial in the photoisomeriza-
tion.

• After reaching the nπ∗ state, the photoisomerization proceeds similarly in all the
considered systems. The evolution of the geometries also follows the same trend,
which is governed by the rotation of the C-N=N-C dihedral in the nπ∗ state.
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Erik Källman, Giovanni Li Manni, Marcus Lundberg, Yingjin Ma, Sebastian Mai,
João Pedro Malhado, Per Åke Malmqvist, Philipp Marquetand, Stefanie A. Mewes,
Jesper Norell, Massimo Olivucci, Markus Oppel, Quan Manh Phung, Kristine Pier-
loot, Felix Plasser, Markus Reiher, Andrew M. Sand, Igor Schapiro, Prachi Sharma,
Christopher J. Stein, Lasse Kragh Sørensen, Donald G. Truhlar, Mihkel Ugandi, Liviu
Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Oskar Weser, Tomasz A.
Wesołowski, Per-Olof Widmark, Sebastian Wouters, Alexander Zech, J. Patrick Zobel,
and Roland Lindh. Openmolcas: From source code to insight. Journal of Chemical
Theory and Computation, 15:5925–5964, 11 2019.

[104] G. Schaftenaar, E. Vlieg, and Vriend. G. molden 2.0: quantum chemistry meets
proteins. Journal of Computer-Aided Molecular Design, 31:789–800, 2017.

[105] Sebastian Mai, Philipp Marquetand, and Leticia Gonzalez. Nonadiabatic dynamics:
The sharc approach. WIREs Computational Molecular Science, 8:1370, 2018.

[106] Martin B. Ulmschneider, Claire Bagneris, Emily C. McCusker, Paul G. DeCaen,
Markus Delling, David E. Clapham, Jakob P. Ulmschneider, and B. A. Wallace.
Molecular dynamics of ion transport through the open conformation of a bacterial
voltage-gated sodium channel. Proceedings of the National Academy of Sciences,
110(16):6364–6369, 2013.



Benchmarking of excitations from a com-
mon M06-2X optimized geometry

DAD DADH2+
2

Gas Water (IEFPCM) Gas Water (IEFPCM)
nπ* ππ* nπ* ππ* nπ* ππ* nπ* ππ*
f ∼ 0 f ∼ 1 f ∼ 0 f ∼ 1 f ∼ 0 f ∼ 1 f ∼ 0 f ∼ 1

B3LYP 2.71 3.06 2.77 2.81 2.60 3.31 2.73 3.09
CAM-B3LYP 2.89 3.50 2.95 3.29 2.80 3.76 2.90 3.53

ωB97XD 2.86 3.54 2.91 3.33 2.78 3.79 2.87 3.57
M06-2X 2.64 3.52 2.69 3.26 2.55 3.79 2.65 3.42

Table A.1 nπ* and ππ* vertical excitation energies (eV) of DAD and DADH2+
2 in gas phase

and in implicit water at the TD-B3LYP, TD-CAM-B3LYP, TD-ωB97XD and TD-M062X
levels of theory, using the cc-pVDZ basis set. The starting geometries were optimized at the
M06-2X level of theory in gas phase. f indicates the approximate oscillator strength of the
states.
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